Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photonics-assisted microwave pulse detection and frequency measurement based on pulse replication and frequency-to-time mapping

Not Accessible

Your library or personal account may give you access

Abstract

A photonics-assisted microwave pulse detection and frequency measurement scheme is proposed. The unknown microwave pulse is converted to the optical domain and then injected into a fiber loop for pulse replication, which makes it easier to identify the microwave pulse with a large pulse repetition interval (PRI), whereas stimulated Brillouin scattering-based frequency-to-time mapping (FTTM) is utilized to measure the carrier frequency of the microwave pulse. A sweep optical carrier is generated and modulated by the unknown microwave pulse and a continuous-wave (CW) single-frequency reference, generating two different frequency sweep optical signals, which are combined and used as the probe wave to detect a fixed Brillouin gain spectrum. When the optical signal is detected in a photodetector, FTTM is realized, and the frequency of the microwave pulse can be determined. An experiment is performed. For a fiber loop containing a 210-m fiber, pulse replication and FTTM of the pulses with a PRI of 20 µs and pulse widths of 1.20, 1.00, 0.85, and 0.65 µs are realized. Under a certain frequency sweep chirp rate of 0.978 THz/s, the measurement errors are below ${\pm}{{12}}$ and ${\pm}{{5}}\;{\rm{MHz}}$ by using one pair of pulses and multiple pairs of pulses, respectively. The influence of the frequency sweep chirp rate and pulse width on the measurement error has also been studied. To a certain extent, the faster the frequency sweep, the greater the frequency measurement error. For a specific frequency sweep chirp rate, the measurement error is almost unaffected by the pulse width to be measured.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Photonic-assisted wideband microwave frequency measurement based on optical heterodyne detection

Xiang Li, Zhiqiang Fan, Jun Su, Yunxiang Wang, Shuangjin Shi, and Qi Qiu
Opt. Express 32(10) 18127-18138 (2024)

Instantaneous microwave frequency measurement with single branch detection based on the birefringence effect

Wei Zhu, Jing Li, Li Pei, Tigang Ning, Jingjing Zheng, and Jianshuai Wang
Appl. Opt. 61(20) 5894-5901 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel