Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Effects of random external background stimulation on network synaptic stability after tetanization

A modeling study

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We constructed a simulated spiking neural network model to investigate the effects of random background stimulation on the dynamics of network activity patterns and tetanus induced network plasticity. The simulated model was a “leaky integrate-and-fire” (LIF) neural model with spike-timing-dependent plasticity (STDP) and frequency-dependent synaptic depression. Spontaneous and evoked activity patterns were compared with those of living neuronal networks cultured on multielectrode arrays. To help visualize activity patterns and plasticity in our simulated model, we introduced new population measures called Center of Activity (CA) and Center of Weights (CW) to describe the spatio-temporal dynamics of network-wide firing activity and network-wide synaptic strength, respectively. Without random background stimulation, the network synaptic weights were unstable and often drifted after tetanization. In contrast, with random background stimulation, the network synaptic weights remained close to their values immediately after tetanization. The simulation suggests that the effects of tetanization on network synaptic weights were difficult to control because of ongoing synchronized spontaneous bursts of action potentials, or “barrages.” Random background stimulation helped maintain network synaptic stability after tetanization by reducing the number and thus the influence of spontaneous barrages. We used our simulated network to model the interaction between ongoing neural activity, external stimulation and plasticity, and to guide our choice of sensory-motor mappings for adaptive behavior in hybrid neural-robotic systems or “hybrots.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakkum, D. J., Shkolnik, A. C., Ben-Ary, G., Gamblen, P., Demarse, T. B., and Potter, S. M. (2004) Removing some ‘A’ from AI: embodied cultured networks. In: Embodied Artificial Intelligence. Iida, F., Steels, L., Pfeifer, R. (eds.) Springer-Verlag, Berlin.

    Google Scholar 

  • Baruchi, I. and Ben-Jacob, E. (2004) Functional holography of recorded neuronal networks activity. J. Neuroinformat. 2, 333–352.

    Article  Google Scholar 

  • Beggs, J. and Plenz, D. (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V. and Collingridge, G. L. A. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V. and Lømo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. Lond. 232, 331–356.

    PubMed  CAS  Google Scholar 

  • Brooks, R. (1999) In: Cambrian Intelligence, the Early History of the New AI: The MIT press, Cambridge.

    Google Scholar 

  • Brown, E. N., Kass, R. E., and Mitra, P. P. (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456–461.

    Article  PubMed  CAS  Google Scholar 

  • Caminiti, R., Johnson, P. B., Burnod, Y., Galli, C., and Ferraina, S. (1990) Shifts of preferred directions of premotor cortical cells with arm movements performed across the workspace. Exp. Brain Res. 83, 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Davies, D. L. and Bouldin, D. W. (1979) A cluster separation measure. IEEE Trans. Pattern Anal. Machine Intell. 1, 224–227.

    Google Scholar 

  • DeMarse, T. B., Wagenaar, D. A., Blau, A. W., and Potter, S. M. (2001) The neurally controlled animat: biological brains acting with simulated bodies. Autonomous Robots 11, 305–310.

    Article  PubMed  Google Scholar 

  • Georgopoulos, A. P. (1994) Population activity in the control of movement. In: Selectionism and the Brain, Academic Press, San Diego, pp. 103–119.

    Google Scholar 

  • Gross, G. W. and Kowalski, J. M. (1999) Origins of activity patterns in self-organizing neuronal networks in vitro. J. Intell. Mat. Sys. and Struct. 10, 558–564.

    Article  Google Scholar 

  • Gross, G. W., Rhoades, B. K., and Kowalski, J. K. (1993a) Dynamics of burst patterns generated by monolayer networks in culture. In: Neurobionics: An Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System. Bothe, H. W., Samii, M., Eckmiller, R., (eds.) North-Holland, Amsterdam, pp. 89–121.

    Google Scholar 

  • Gross, G. W., Rhoades, B. K., Reust, D. L., and Schwalm, F. U. (1993b) Stimulation of monolayer networks in culture through thin-film indiumtin oxide recording electrodes. J. Neurosci. Methods 50, 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Ikegaya, Y., Aaron, G., Cossart, R., et al. (2004) Synfire chains and cortical songs: Temporal modules of cortical activity. Science 304, 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. M., Gally, J. A., and Edelman, G. M. (2004) Spike-timing dynamics of neuronal groups. Cereb. Cortex 14, 933–944.

    Article  PubMed  Google Scholar 

  • Jimbo, Y., Tateno, T., and Robinson, H. P. C. (1999) Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophys. J. 76, 670–678.

    Article  PubMed  CAS  Google Scholar 

  • Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H. P. C., and Kawana, A. (1996) Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neurosci. Lett. 206, 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, H. and Fukunishi, K. (1998) Dendrite classification in rat hippocampal neurons according to signal propagation properties—observation by multichannel optical recording in cultured neuronal networks. Exp. Brain Res. 122, 378–392.

    Article  PubMed  CAS  Google Scholar 

  • Krichmar, J. and Edelman, G. (2002) Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cereb. Cortex 12, 818–830.

    Article  PubMed  Google Scholar 

  • Latham, P. E., Richmond, B. J., Nirenberg, S., and Nelson, P. G. (2000) Intrinsic dynamics in neuronal networks. II. Experiment. J. Neurophys. 83, 828–835.

    CAS  Google Scholar 

  • Linden, D. J. (1994) Long-term synaptic depression in the mammalian brain. Neuron 12, 457–472.

    Article  PubMed  CAS  Google Scholar 

  • Madhavan, R., Chao, Z. C., and Potter, S. M. (2005) Spontaneous bursts are better indicators of tetanus-induced plasticity than responses to probe stimuli. Proc. 2nd Intl. IEEE EMBS Conf. On Neural Engineering: 434–437.

  • Madhavan, R., Wagenaar, D. A., Chao, Z. C., and Potter, S. M. (2003) Control of bursting in dissociated cortical cultures on multi-electrode arrays. Proc. Substrate-Integrated Micro-Electrode Arrays, Denton, TX.

  • Markram, H., Gupta, A., Uziel, A., Wang, Y., and Tsodyks, M. (1998) Information processing with frequency-dependent synaptic connections. Neurobiology of Learning and Memory 70, 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Marom, S. and Shahaf, G. (2002) Development, learning and memory in large random networks of cortical neurons: Lessons beyond anatomy. Quart. Rev. Biophys. 35, 63–87.

    Article  Google Scholar 

  • McIntyre, C. and Grill, W. (2002) Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophys. 88, 1592–1604.

    Google Scholar 

  • Meyer, J. A. and Wilson, S. W. (1991) From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge.

    Google Scholar 

  • Natschlager, T., Markram, H., and Maass, W. (2002) Computer models and analysis tools for neural microcircuits. In: A Practical Guide to Neuroscience Databases and Associated Tools.

  • Pesaran, B., Pezaris, J., Sahani, M., Mitra, P., and Andersen, R. (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811.

    Article  PubMed  CAS  Google Scholar 

  • Potter, S. M. (2005) Two-photon microscopy for 4D imaging of living neurons. In: Imaging in Neuroscience and Development: A Laboratory Manual (Yuste, R. and Konnerth, A., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY: pp. 59–70.

    Google Scholar 

  • Potter, S. M. and DeMarse, T. B. (2001) A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Potter, S. M., Fraser, S. E., and Pine, J. (1997) Animat in a Petri Dish: Cultured Neural Networks for Studying Neural Computation. Proceedings of the Fourth Joint Symposium on Neural Computation, UCSD, pp. 167–174.

  • Potter, S. M., Lukina, N., Longmuir, K. J., and Wu, Y. (2001) Multi-site two-photon imaging of neurons on multi-electrode arrays. SPIE Proc. 4262, 104–110.

    Article  Google Scholar 

  • Potter, S. M., Wagenaar, D. A., and DeMarse, T. B. Closing the loop: stimulation feedback systems for embodied MEA cultures. In: Advances in Network Electrophysiology Using Multi-Electrode Arrays. Taketani, M., Baudry, M. (eds.) Kluwer, New York, in press.

  • Rambani, K., Booth, M. C., Brown, E. A., Raikov, I., and Potter, S. M. (2005) Custom made multiphoton microscope for long-term imaging of neuronal cultures to explore structural and functional plasticity. Proc. SPIE, 5700: 102–108.

    Article  Google Scholar 

  • Schaal, S., Ijspeert, A., Billard, A., Vijayakumar, S., and Hallam, J., Meyer, J. (eds.) (2004) From animals to animats 8: Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior: Bradford Books, Cambridge, MA.

    Google Scholar 

  • Segev, R. and Ben-Jacob, E. (2000) Generic modeling of chemotactic based self-wiring of neural networks. Neural Networks 13, 185–199.

    Article  PubMed  CAS  Google Scholar 

  • Shahaf, G. and Marom, S. (2001) Learning in networks of cortical neurons. J. Neurosci. 21, 8782–8788.

    PubMed  CAS  Google Scholar 

  • Song, S., Miller, K. D., and Abbott, L. F. (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.

    Article  PubMed  CAS  Google Scholar 

  • Tateno, T. and Jimbo, Y. (1999) Activity-dependent enhancement in the reliability of correlated spike timings in cultured cortical neurons. Biol. Cybern. 80, 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Wagenaar, D. A., Madhavan, R., Pine, J., and Potter, S. (2005) Controlling Bursting in Cortical Cultures with Closed-Loop Multi-Electrode Stimulation. J. Neurosci. 25, 680–688.

    Article  PubMed  CAS  Google Scholar 

  • Wagenaar, D. A., Madhaven, R., and Potter, S. M. (2003) Stimulating news for MEA enthusiasts. In: SIMEA 2003. Denton, TX, USA.

  • Wagenaar, D. A., Pine, J., and Potter, S. (2004) Effective parameters for stimulation of dissociated cultures using multi-electrode arrays. J. Neurosci. Methods 138, 27–37.

    Article  PubMed  Google Scholar 

  • Wagenaar, D. A. and Potter, S. M. (2004) A versatile all-channel stimulator for electrode arrays, with real-time control. J. Neural Eng. 1, 39–45.

    Article  PubMed  Google Scholar 

  • Wong, R. O. L., Meister, M., and Shatz, C. J. (1993) Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11, 923–938.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve M. Potter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, Z.C., Bakkum, D.J., Wagenaar, D.A. et al. Effects of random external background stimulation on network synaptic stability after tetanization. Neuroinform 3, 263–280 (2005). https://doi.org/10.1385/NI:3:3:263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:3:3:263

Index Entries