Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Kybernetika 56 no. 4, 794-809, 2020

Global robust output regulation of a class of nonlinear systems with nonlinear exosystems

Yuan Jiang, Ke Lu and Jiyang DaiDOI: 10.14736/kyb-2020-4-0794

Abstract:

An adaptive output regulation design method is proposed for a class of output feedback systems with nonlinear exosystem and unknown parameters. A new nonlinear internal model approach is developed in the present study that successfully converts the global robust output regulation problem into a robust adaptive stabilization problem for the augmented system. Moreover, an output feedback controller is achieved based on a type of state filter which is designed for the transformed augmented system. The adaptive control technique is successfully introduced to the stabilization design to ensure the global stability of the closed-loop system. The result can successfully apply to a tracking control problem associated with the well known Van der Pol oscillator.

Keywords:

output regulation, nonlinear systems, global stability, internal model

Classification:

93E12, 62A10, 62F15

References:

  1. M. Bodson and S. C. Douglas: Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequencies. Automatica 33 (1997), 2213-2221.   DOI:10.1016/s0005-1098(97)00149-0
  2. C. I. Byrnes and A. Isidori: Nonlinear internal model for output regulation. IEEE Trans. Automat. Control 49 (2004), 2244-2247.   DOI:10.1109/tac.2004.838492
  3. C. Chen, Z. Ding and B. Lennox: Rejection of nonharmonic disturbances innonlinear systems with semi-global stability. IEEE Trans. Circuits Systems, II: Express Briefs 55 (2008), 1289-1293.   DOI:10.1109/tcsii.2008.2009962
  4. Z. Chen and J. Huang: Robust output regulation with nonlinear exosystems. Automatica 41 (2005), 1447-1454.   DOI:10.1016/j.automatica.2005.03.015
  5. Z. Ding: Semi-global stabilization of a class of non-minimum phase nonlinear output feedback systems. IEE Proc. Control Theory Appl. 152 (2005), 4, 460-464.   DOI:10.1049/ip-cta:20041246
  6. Z. Ding: Output regulation of uncertain nonlinear systems with nonlinear exosystems. IEEE Trans. Automat. Control 51 (2006), 498-503.   DOI:10.1109/tac.2005.864199
  7. Z. Ding: Asymptotic rejection of unknown sinusoidal disturbances in nonlinear systems. Automatica 43 (2007), 174-177.   DOI:10.1016/j.automatica.2006.08.006
  8. Z. Ding: Decentralized output regulation of large scale nonlinear systems with delay. Kybernetika 45 (2009), 33-48.   CrossRef
  9. X. Huang, H. K. Khalil and Y. Song: Regulation of non-minimum-phase nonlinear systems using slow integrators and high-gain feedback. IEEE Trans. Automat. Control 64 (2019), 2, 640-653.   DOI:10.1109/tac.2018.2839532
  10. J. Huang and W. J. Rugh: On a nonlinear multivariable servomenchanism problem. Automatica 26 (1990), 963-972.   DOI:10.1016/0005-1098(90)90081-r
  11. A. Isidori: Global almost disturbance decoupling with stability for non-minimum phase single-input single-output nonlinear systems. Systems Control Lett. 28 (1996), 2, 115-122.   DOI:10.1016/0167-6911(96)00021-7
  12. A. Isidori: A tool for semiglobal stabilization of uncertain non-minimum phase nonlinear systems via output feedback. IEEE Trans. Automat. Control 45 (2000), 10, 1817-1827.   DOI:10.1109/tac.2000.880972
  13. A. Isidori: Nonlinear Control Systems. Springer-Verlag, Berlin 2013.   DOI:10.1007/978-3-662-02581-9
  14. A. Isidori and C. I. Byrnes: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131-140.   DOI:10.1109/9.45168
  15. A. Isidori, L. Marconi and A. Serrani: New results on semiglobal output regulation of non-minimum phase nonlinear systems. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 1467-1472.   DOI:10.1109/cdc.2002.1184726
  16. A. Isidori, L. Marconi and A. Serrani: Observability conditions for the semiglobal output regulation of non-minimum phase nonlinear systems. In: Proc. 42nd IEEE Conference on Decision and Control, Maui 2003, pp. 55-60.   DOI:10.1109/cdc.2003.1272535
  17. Y. Jiang: Rejection of nonharmonic disturbances in the nonlinear system via the internal model approach. J. Vibration Control 13 (2011), 6, 1916-1921.   DOI:10.1177/1077546311429051
  18. Y. Jiang and J. Y. Dai: Adaptive output regulation of a class of nonlinear output feedback systems with unknown high frequency gain. IEEE/CAA J. Autom. Sinica 7 (2020), 2, 568-574.   DOI:10.1109/jas.2020.1003060
  19. Y. Jiang and S. Liu: Rejection of nonharmonic disturbances in a class of nonlinear systems with nonlinear exosystems. Asian J. Control 18(2011), 12, 858-867.   DOI:10.1002/asjc.193
  20. Y. Jiang, S. T. Liu and R. L. Wang: Rejection of nonharmonic disturbances for a class of uncertain nonlinear systems with nonlinear exosystems. Science China (Inform. Sci.) 56(2013), 3, 1-12.   DOI:10.1007/s11432-011-4481-7
  21. D. Karagiannisa, Z. Jiang, R. Ortegac and et al: Output-feedback stabilization of a class of uncertain non-minimum phase nonlinear systems. Automatica 41 (2005), 9, 1609-1615.   DOI:10.1016/j.automatica.2005.04.013
  22. S. D. Marco, L. Marconi, R. Mahony and T. Hamel: Output regulation for systems on matrix lie-groups. Automatica 87 (2018), 8-16.   DOI:10.1016/j.automatica.2017.08.006
  23. R. Marino and P. Tomei: Global adaptive output feedback control of nonlinear systems, part i: Linear parameterization. IEEE Trans. Automat. Control 38 (1993), 17-32.   DOI:10.1109/9.186309
  24. S. Nazrulla and H. K. Khalil: Output regulation of non-minimum phase nonlinear systems using an extended high-gain observer. In: IEEE International Conference on Control Automation, IEEE, 2010.   DOI:10.1109/icca.2009.5410197
  25. S. Nazrulla and H. K. Khalil: Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Trans. Automat. Control 56 (2011), 4, 802-813.   DOI:10.1109/tac.2010.2069612
  26. L. E. Ramos, S. Čelikovský and V. Kučera: Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem. IEEE Trans. Automat. Control 49 (2004), 1737-1742.   DOI:10.1109/tac.2004.835404
  27. B. Rehák, S. Čelikovský, J. Ruiz-León and J. Orozco-Mora: A comparison of two fem-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427-444.   CrossRef
  28. A. Tornambe: Output feedback stabilization of a class of non-minimum phase nonlinear systems. Systems Control Lett. 19(1992), 3, 193-204.   DOI:10.1016/0167-6911(92)90113-7
  29. N. T. Trinh, V. Andrieu and C. Z. Xu: Output regulation for a cascaded network of 2$\times$2 hyperbolic systems with PI controller. Automatica 91 (2018), 270-278.   DOI:10.1016/j.automatica.2018.01.010
  30. L. Wang, A. Isidori, Z. T. Liu and H. Y. Su: Robust output regulation for invertible nonlinear MIMO systems. Automatica 82 (2017), 278-286.   DOI:10.1016/j.automatica.2017.04.049
  31. Z. Xi and Z. Ding: Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems. Automatica 43 (2007), 143-149.   DOI:10.1016/j.automatica.2006.08.011
  32. D. Xu, X. Wang and Z. Chen: Output regulation of nonlinear output feedback systems with exponential parameter convergence. Systems Control Lett. 88 (2016), 81-90.   DOI:10.1016/j.sysconle.2015.12.004
  33. E. Zattoni, A. M. Perdon. and G. Conte: Output regulation by error dynamic feedback in hybrid systems with periodic state jumps. Automatica 50 (2017), 1, 322-334.   DOI:10.1016/j.automatica.2017.03.037