Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

DBToaster: higher-order delta processing for dynamic, frequently fresh views

Published: 01 June 2012 Publication History

Abstract

Applications ranging from algorithmic trading to scientific data analysis require realtime analytics based on views over databases that change at very high rates. Such views have to be kept fresh at low maintenance cost and latencies. At the same time, these views have to support classical SQL, rather than window semantics, to enable applications that combine current with aged or historical data.
In this paper, we present viewlet transforms, a recursive finite differencing technique applied to queries. The viewlet transform materializes a query and a set of its higher-order deltas as views. These views support each other's incremental maintenance, leading to a reduced overall view maintenance cost. The viewlet transform of a query admits efficient evaluation, the elimination of certain expensive query operations, and aggressive parallelization. We develop viewlet transforms into a workable query execution technique, present a heuristic and cost-based optimization framework, and report on experiments with a prototype dynamic data management system that combines viewlet transforms with an optimizing compilation technique. The system supports tens of thousands of complete view refreshes a second for a wide range of queries.

References

[1]
D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The design of the Borealis stream processing engine. In CIDR, pages 277--289, 2005.
[2]
S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of materialized views and indexes in SQL databases. In VLDB, pages 496--505, 2000.
[3]
Y. Ahmad and C. Koch. DBToaster: A SQL compiler for high-performance delta processing in main-memory databases compiler for high-performance delta processing in main-memory databases. PVLDB, 2(2): 1566--1569, 2009.
[4]
A. Aiken, J. M. Hellerstein, and J. Widom. Static analysis techniques for predicting the behavior of active database rules. ACM TODS, 20(1): 3--41, 1995.
[5]
S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE TOIT, 46(2): 325--343, 2000.
[6]
J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently updating materialized views. In SIGMOD, pages 61--71, 1986.
[7]
P. Buneman and E. K. Clemons. Efficiently monitoring relational databases. ACM TODS, 4(3): 368--382, 1979.
[8]
S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries with materialized views. In ICDE, pages 190--200, 1995.
[9]
L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for deferred view maintenance. In SIGMOD, pages 469--480, 1996.
[10]
L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A. Ross. Supporting multiple view maintenance policies. In SIGMOD, pages 405--416, 1997.
[11]
G. Cormode and S. Muthukrishnan. What's hot and what's not: Tracking most frequent items dynamically. ACM TODS, 30(1): 249--278, 2005.
[12]
U. Dayal, N. Goodman. Query optimization for CODASYL database systems. In SIGMOD, pages 138--150, 1982.
[13]
T. M. Ghanem, A. K. Elmagarmid, P.-Å. Larson, and W. G. Aref. Supporting views in data stream management systems. ACM TODS, 35(1): 1--47, 2010.
[14]
T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In SIGMOD, pages 328--339, 1995.
[15]
A. Gupta, I. S. Mumick, V. S. Subrahmanian. Maintaining views incrementally. In SIGMOD, pages 157--166, 1993.
[16]
H. Gupta and I. S. Mumick. Selection of views to materialize in a data warehouse. IEEE TKDE, 17(1): 24--43, 2005.
[17]
A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A. Ross. Implementing incremental view maintenance in nested data models. In DBPL, pages 202--221, 1997.
[18]
O. Kennedy, Y. Ahmad, and C. Koch. DBToaster: Agile views for a dynamic data management system. In CIDR, pages 284--295, 2011.
[19]
C. Koch. Incremental query evaluation in a ring of databases. In PODS, pages 87--98, 2010.
[20]
Y. Kotidis and N. Roussopoulos. A case for dynamic view management. ACM TODS, 26(4): 388--423, 2001.
[21]
S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly sharing for streamed aggregation. In SIGMOD, pages 623--634, 2006.
[22]
P.-Å. Larson and J. Zhou. Efficient maintenance of materialized outer-join views. In ICDE, pages 56--65, 2007.
[23]
Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for incremental computation. ACM TOPLAS, 20(3): 546--585, 1998.
[24]
R. Motwani, J. Widom, et. al. Query processing, approximation, and resource management in a data stream management system. In CIDR, 2003.
[25]
T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incremental maintenance for non-distributive aggregate functions. In VLDB, pages 802--813, 2002.
[26]
B. A. Pearlmutter and J. M. Siskind. Lazy multivariate higher-order forward-mode AD. In POPL, pages 155--160, 2007.
[27]
K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and integrity constraint checking: Trading space for time. In SIGMOD, pages 447--458, 1996.
[28]
N. Roussopoulos. An incremental access method for ViewCache: Concept, algorithms, and cost analysis. ACM TODS, 16(3): 535--563, 1991.
[29]
K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay. How to roll a join: Asynchronous incremental view maintenance. In SIGMOD, pages 129--140, 2000.
[30]
N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding in a data stream manager. In VLDB, pages 309--320, 2003.
[31]
Transaction Processing Performance Council. TPC-H benchmark specification. http://www.tpc.org/hspec.html.
[32]
S. D. Viglas and J. F. Naughton. Rate-based query optimization for streaming information sources. In SIGMOD, pages 37--48, 2002.
[33]
J. Yang and J. Widom. Incremental computation and maintenance of temporal aggregates. VLDB Journal, 12(3): 262--283, 2003.
[34]
J. Zhou, P.-Å. Larson, H. G. Elmongui. Lazy maintenance of materialized views. In VLDB, pages 231--242, 2007.
[35]
J. Zhou, P.-Å. Larson, J. C. Freytag, and W. Lehner. Efficient exploitation of similar subexpressions for query processing. In SIGMOD, pages 533--544, 2007.
[36]
D. C. Zilio, C. Zuzarte, S. Lightstone, W. Ma, G. M. Lohman, R. Cochrane, H. Pirahesh, L. S. Colby, J. Gryz, E. Alton, D. Liang, and G. Valentin. Recommending materialized views and indexes with IBM DB2 design advisor. In ICAC, pages 180--188, 2004.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 5, Issue 10
June 2012
180 pages

Publisher

VLDB Endowment

Publication History

Published: 01 June 2012
Published in PVLDB Volume 5, Issue 10

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Asymptotically Better Query Optimization Using Indexed AlgebraProceedings of the VLDB Endowment10.14778/3611479.361150516:11(3018-3030)Online publication date: 24-Aug-2023
  • (2023)Transactional Panorama: A Conceptual Framework for User Perception in Analytical Visual InterfacesProceedings of the VLDB Endowment10.14778/3583140.358316216:6(1494-1506)Online publication date: 1-Feb-2023
  • (2023)Change Propagation Without JoinsProceedings of the VLDB Endowment10.14778/3579075.357908016:5(1046-1058)Online publication date: 1-Jan-2023
  • (2023)Scalable Spreadsheet-Driven End-User Applications with Incremental ComputationProceedings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software10.1145/3622758.3622887(1-14)Online publication date: 18-Oct-2023
  • (2023)Tempura: a general cost-based optimizer framework for incremental data processing (Journal Version)The VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-023-00785-132:6(1315-1342)Online publication date: 20-Mar-2023
  • (2022)Provenance-based data skippingProceedings of the VLDB Endowment10.14778/3494124.349413015:3(451-464)Online publication date: 4-Feb-2022
  • (2022)Interactive Query Explanations Using Fine Grained ProvenanceProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3520251(2536-2538)Online publication date: 10-Jun-2022
  • (2022)Secure and Policy-Compliant Query Processing on Heterogeneous Computational Storage ArchitecturesProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3517913(1462-1477)Online publication date: 10-Jun-2022
  • (2021)CquirrelProceedings of the VLDB Endowment10.14778/3476311.347631514:12(2667-2670)Online publication date: 1-Jul-2021
  • (2021)Shared arrangementsProceedings of the VLDB Endowment10.14778/3401960.340197413:10(1793-1806)Online publication date: 10-Mar-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media