Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Spatial queries with two kNN predicates

Published: 01 July 2012 Publication History

Abstract

The widespread use of location-aware devices has led to countless location-based services in which a user query can be arbitrarily complex, i.e., one that embeds multiple spatial selection and join predicates. Amongst these predicates, the k-Nearest-Neighbor (kNN) predicate stands as one of the most important and widely used predicates. Unlike related research, this paper goes beyond the optimization of queries with single kNN predicates, and shows how queries with two kNN predicates can be optimized. In particular, the paper addresses the optimization of queries with: (i) two kNN-select predicates, (ii) two kNN-join predicates, and (iii) one kNN-join predicate and one kNN-select predicate. For each type of queries, conceptually correct query evaluation plans (QEPs) and new algorithms that optimize the query execution time are presented. Experimental results demonstrate that the proposed algorithms outperform the conceptually correct QEPs by orders of magnitude.

References

[1]
Secondo Berlinmod. http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html, 2011.
[2]
N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust access method for points and rectangles. In SIGMOD Conference, pages 322--331, 1990.
[3]
C. Düntgen, T. Behr, and R. H. Güting. Berlinmod: a benchmark for moving object databases. VLDB Journal, 18(6):1335--1368, 2009.
[4]
H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System Implementation. Prentice-Hall, 2000.
[5]
R. H. Güting, T. Behr, and J. Xu. Efficient k-nearest neighbor search on moving object trajectories. VLDB Journal, 19(5):687--714, 2010.
[6]
A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD Conference, pages 47--57, 1984.
[7]
H.-P. Kriegel, P. Kunath, and M. Renz. R*-tree. In Encyclopedia of GIS, pages 987--992. 2008.
[8]
M. F. Mokbel and W. G. Aref. Place: A scalable location-aware database server for spatio-temporal data streams. IEEE Data Eng. Bull., 28(3):3--10, 2005.
[9]
M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremental processing of continuous queries in spatio-temporal databases. In SIGMOD Conference, pages 623--634, 2004.
[10]
K. Mouratidis and D. Papadias. Continuous nearest neighbor queries over sliding windows. IEEE Trans. Knowl. Data Eng., 19(6):789--803, 2007.
[11]
K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis. Continuous nearest neighbor monitoring in road networks. In VLDB, pages 43--54, 2006.
[12]
S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. Analysis and evaluation of V*-kNN: an efficient algorithm for moving kNN queries. VLDB Journal, 19(3):307--332, 2010.
[13]
N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In SIGMOD Conference, pages 71--79, 1995.
[14]
H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Publishers Inc., 2006.
[15]
J. Sankaranarayanan, H. Samet, and A. Varshney. A fast all nearest neighbor algorithm for applications involving large point-clouds. Computers & Graphics, 31(2):157--174, 2007.
[16]
Y. N. Silva, A. M. Aly, W. G. Aref, and P.-Å. Larson. Simdb: a similarity-aware database system. In SIGMOD Conference, pages 1243--1246, 2010.
[17]
Y. N. Silva, W. G. Aref, and M. H. Ali. Similarity group-by. In ICDE, pages 904--915, 2009.
[18]
Y. N. Silva, W. G. Aref, and M. H. Ali. The similarity join database operator. In ICDE, pages 892--903, 2010.
[19]
Y. N. Silva, W. G. Aref, P.-Å. Larson, and M. H. Ali. Similarity-aware query processing and optimization. Technical Report 12--006, Department of Computer Science, Purdue University, 2012.
[20]
C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An efficient method for KNN join processing. In VLDB, pages 756--767, 2004.
[21]
X. Xiong, M. F. Mokbel, and W. G. Aref. SEA-CNN: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In ICDE, pages 643--654, 2005.

Cited By

View all
  • (2024)Mobility Data Science: Perspectives and ChallengesACM Transactions on Spatial Algorithms and Systems10.1145/365215810:2(1-35)Online publication date: 1-Jul-2024
  • (2022)Scalable Processing of Spatial-Keyword QueriesundefinedOnline publication date: 26-Feb-2022
  • (2019)Top-k Queries over Digital TracesProceedings of the 2019 International Conference on Management of Data10.1145/3299869.3319857(954-971)Online publication date: 25-Jun-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 5, Issue 11
July 2012
608 pages

Publisher

VLDB Endowment

Publication History

Published: 01 July 2012
Published in PVLDB Volume 5, Issue 11

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Mobility Data Science: Perspectives and ChallengesACM Transactions on Spatial Algorithms and Systems10.1145/365215810:2(1-35)Online publication date: 1-Jul-2024
  • (2022)Scalable Processing of Spatial-Keyword QueriesundefinedOnline publication date: 26-Feb-2022
  • (2019)Top-k Queries over Digital TracesProceedings of the 2019 International Conference on Management of Data10.1145/3299869.3319857(954-971)Online publication date: 25-Jun-2019
  • (2019)Nearest base-neighbor search on spatial datasetsKnowledge and Information Systems10.1007/s10115-019-01360-362:3(867-897)Online publication date: 10-Apr-2019
  • (2018)The Merkurion approach for similarity searching optimization in Database Management SystemsData & Knowledge Engineering10.1016/j.datak.2017.09.003113(18-42)Online publication date: Jan-2018
  • (2016) Efficient Processing of Moving k -Range Nearest Neighbor Queries in Directed and Dynamic Spatial Networks Mobile Information Systems10.1155/2016/24061422016(1-17)Online publication date: 2016
  • (2016)Cruncher: Distributed in-memory processing for location-based services2016 IEEE 32nd International Conference on Data Engineering (ICDE)10.1109/ICDE.2016.7498356(1406-1409)Online publication date: May-2016
  • (2016)Efficient moving k nearest neighbor queries over line segment objectsWorld Wide Web10.1007/s11280-015-0351-319:4(653-677)Online publication date: 1-Jul-2016
  • (2015)Spatial queries with k-nearest-neighbor and relational predicatesProceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/2820783.2820815(1-10)Online publication date: 3-Nov-2015
  • (2015)Nearest Neighbour Join with Groups and PredicatesProceedings of the ACM Eighteenth International Workshop on Data Warehousing and OLAP10.1145/2811222.2811225(39-48)Online publication date: 22-Oct-2015
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media