Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Work-efficient parallel skyline computation for the GPU

Published: 01 May 2015 Publication History

Abstract

The skyline operator returns records in a dataset that provide optimal trade-offs of multiple dimensions. State-of-the-art skyline computation involves complex tree traversals, data-ordering, and conditional branching to minimize the number of point-to-point comparisons. Meanwhile, GPGPU computing offers the potential for parallelizing skyline computation across thousands of cores. However, attempts to port skyline algorithms to the GPU have prioritized throughput and failed to outperform sequential algorithms.
In this paper, we introduce a new skyline algorithm, designed for the GPU, that uses a global, static partitioning scheme. With the partitioning, we can permit controlled branching to exploit transitive relationships and avoid most point-to-point comparisons. The result is a non-traditional GPU algorithm, SkyAlign, that prioritizes work-efficiency and respectable throughput, rather than maximal throughput, to achieve orders of magnitude faster performance.

References

[1]
I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline evaluation. TODS, 33(4): 31:1--49, November 2008.
[2]
K. S. Bøgh, I. Assent, and M. Magnani. Efficient gpu-based skyline computation. In Proc. DaMoN, pages 5: 1--6, 2013.
[3]
S. Börzsönyi, D. Kossman, and K. Stocker. The skyline operator. In Proc. ICDE, pages 421--430, 2001.
[4]
S. Chester, D. Šidlauskas, I. Assent, and K. S. Bøgh. Scalable parallelization of skyline computation for multi-core processors. In Proc. ICDE, 2015.
[5]
W. Choi, L. Liu, and B. Yu. Multi-criteria decision making with skyline computation. In Proc. IRI, pages 316--323, 2012.
[6]
J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In Proc. ICDE, pages 717--719, 2003.
[7]
B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational query coprocessing on graphics processors. TODS, 34(4): 1--39, 2009.
[8]
B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational joins on graphics processors. In Proc. SIGMOD, pages 511--524, 2008.
[9]
K. Hose and A. Vlachou. A survey of skyline processing in highly distributed environments. VLDB J, 21(3): 359--384, 2012.
[10]
H. Im, J. Park, and S. Park. Parallel skyline computation on multicore architectures. 36(4): 808--823, 2011.
[11]
T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. GPU join processing revisited. In Proc. DaMoN, pages 55--62, 2012.
[12]
J. Lee and S.-w. Hwang. Scalable skyline computation using a balanced pivot selection technique. Information Systems, 39: 1--24, January 2014.
[13]
K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching the skyline in Z order. In Proc. VLDB, pages 279--290, 2007.
[14]
K. Mullesgaard, J. L. Pedersen, H. Lu, and Y. Zhou. Efficient skyline computation in MapReduce. In Proc. EDBT, pages 37--48, 2014.
[15]
D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database systems. TODS, 30(1): 41--82, March 2005.
[16]
Y. Park, J.-K. Min, and K. Shim. Parallel computation of skyline and reverse skyline queries using MapReduce. PVLDB, 6(14): 2002--2011, 2013.
[17]
K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation. In Proc. VLDB, pages 301--310, 2001.
[18]
A. Vlachou, C. Doulkeridis, and Y. Kotidis. Angle-based space partitioning for efficient parallel skyline computation. In Proc. SIGMOD, pages 227--238, 2008.
[19]
L. Woods, G. Alonso, and J. Teubner. Parallel computation of skyline queries. In Proc. FCCM, pages 1--8, 2013.
[20]
S. Zhang, N. Mamoulis, and D. W. Cheung. Scalable skyline computation using object-based space partitioning. In Proc. SIGMOD, pages 483--494, 2009.

Cited By

View all
  • (2025)Distributed Computation of Skyline Probability over Uncertain PreferencesProceedings of the 26th International Conference on Distributed Computing and Networking10.1145/3700838.3700859(125-133)Online publication date: 4-Jan-2025
  • (2025)Emerging skycubeKnowledge and Information Systems10.1007/s10115-024-02320-2Online publication date: 13-Jan-2025
  • (2022)Parallel Skyline Processing Using Space Pruning on GPUProceedings of the 31st ACM International Conference on Information & Knowledge Management10.1145/3511808.3557414(1074-1083)Online publication date: 17-Oct-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 8, Issue 9
May 2015
76 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 May 2015
Published in PVLDB Volume 8, Issue 9

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)1
Reflects downloads up to 15 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Distributed Computation of Skyline Probability over Uncertain PreferencesProceedings of the 26th International Conference on Distributed Computing and Networking10.1145/3700838.3700859(125-133)Online publication date: 4-Jan-2025
  • (2025)Emerging skycubeKnowledge and Information Systems10.1007/s10115-024-02320-2Online publication date: 13-Jan-2025
  • (2022)Parallel Skyline Processing Using Space Pruning on GPUProceedings of the 31st ACM International Conference on Information & Knowledge Management10.1145/3511808.3557414(1074-1083)Online publication date: 17-Oct-2022
  • (2022)GAM: A GPU-Accelerated Algorithm for MaxRS Queries in Road NetworksJournal of Computer Science and Technology10.1007/s11390-022-2330-337:5(1005-1025)Online publication date: 1-Oct-2022
  • (2019)A scalable spatial skyline evaluation system utilizing parallel independent region groupsThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-018-0519-428:1(73-98)Online publication date: 1-Feb-2019
  • (2018)A Tour of Lattice-Based Skyline AlgorithmsHandbook of Research on Investigations in Artificial Life Research and Development10.4018/978-1-5225-5396-0.ch006(96-122)Online publication date: 2018
  • (2018)Massively parallel skyline computation for processing-in-memory architecturesProceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques10.1145/3243176.3243187(1-12)Online publication date: 1-Nov-2018
  • (2018)BJR-tree: fast skyline computation algorithm using dominance relation-based tree structureInternational Journal of Data Science and Analytics10.1007/s41060-018-0098-x7:1(17-34)Online publication date: 31-Jan-2018
  • (2018)Skyline Computation for Big DataData Science and Big Data Analytics10.1007/978-981-10-7641-1_23(267-276)Online publication date: 2-Aug-2018
  • (2018) Parallelizing uncertain skyline computation against n ‐of‐ N data streaming model Concurrency and Computation: Practice and Experience10.1002/cpe.484831:4Online publication date: 6-Nov-2018
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media