Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Koko: a system for scalable semantic querying of text

Published: 01 August 2018 Publication History

Abstract

Koko is a declarative information extraction system that incorporates advances in natural language processing techniques in its extraction language. Koko's extraction language supports simultaneous specification of conditions over the surface syntax and on the structure of the dependency parse tree of sentences, thereby allowing for more refined extractions. Furthermore, the Koko extraction language allows for aggregating evidence from an input document and supports conditions that are tolerant of linguistic variation of expressing concepts.
In this demo, we outline the design of Koko, a system for extracting information and understanding the results of the extraction. Koko provides an interactive interface that allows participants to write queries, understand the input and results of the queries. In particular, the user can customize the input text, visualize the input text's dependency parse trees, and understand the correspondences between query components, dependency tree nodes, text tokens, and the computation and associated scores that led to an extraction.

References

[1]
A. Asai, S. Evensen, B. Golshan, A. Halevy, V. Li, A. Lopatenko, D. Stepanov, Y. Suhara, W.-C. Tan, and Y. Xu. HappyDB: A corpus of 100,000 crowdsourced happy moments. In Proc. LREC, 2018 (to appear). https://rit-public.github.io/HappyDB/.
[2]
L. Chiticariu, Y. Li, and F. R. Reiss. Rule-based information extraction is dead! long live rule-based information extraction systems! In Proc. EMNLP, pages 827--832, 2013.
[3]
Google Cloud Natural Language API. https://cloud.google.com/natural-language/,
[4]
R. T. McDonald, J. Nivre, Y. Quirmbach-Brundage, Y. Goldberg, D. Das, K. Ganchev, K. B. Hall, S. Petrov, H. Zhang, O. Täckström, C. Bedini, N. B. Castelló, and J. Lee. Universal dependency annotation for multilingual parsing. In Proc. ACL, pages 92--97, 2013.
[5]
S. Petrov, D. Das, and R. T. McDonald. A universal part-of-speech tagset. In Proc. LREC, pages 2089--2096, 2012.
[6]
spaCy: Industrial-Strength Natural Language Processing in Python. https://spacy.io/.,
[7]
X. Wang, A. Feng, B. Golshan, A. Halevy, G. Mihaila, H. Oiwa, and W.-C. Tan. Scalable semantic querying of text. PVLDB, 9(11):961--974, 2018.
[8]
XML Path Language (XPath). Xml path language. https://www.w3.org/TR/xpath/.

Cited By

View all
  • (2024)Research on Intelligence Logging Interpretation Technology and System Based on Standard Big Data PlatformProceedings of the International Field Exploration and Development Conference 202310.1007/978-981-97-0272-5_12(144-157)Online publication date: 17-Feb-2024
  • (2022)Pattern Matching Method for Q&A Information Retrieval SystemAdvances in Intelligent Information Hiding and Multimedia Signal Processing10.1007/978-981-19-1053-1_10(101-112)Online publication date: 14-Jul-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 11, Issue 12
August 2018
426 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 August 2018
Published in PVLDB Volume 11, Issue 12

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Research on Intelligence Logging Interpretation Technology and System Based on Standard Big Data PlatformProceedings of the International Field Exploration and Development Conference 202310.1007/978-981-97-0272-5_12(144-157)Online publication date: 17-Feb-2024
  • (2022)Pattern Matching Method for Q&A Information Retrieval SystemAdvances in Intelligent Information Hiding and Multimedia Signal Processing10.1007/978-981-19-1053-1_10(101-112)Online publication date: 14-Jul-2022

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media