Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Snapshot semantics for temporal multiset relations

Published: 01 February 2019 Publication History

Abstract

Snapshot semantics is widely used for evaluating queries over temporal data: temporal relations are seen as sequences of snapshot relations, and queries are evaluated at each snapshot. In this work, we demonstrate that current approaches for snapshot semantics over interval-timestamped multiset relations are subject to two bugs regarding snapshot aggregation and bag difference. We introduce a novel temporal data model based on K-relations that overcomes these bugs and prove it to correctly encode snapshot semantics. Furthermore, we present an efficient implementation of our model as a database middleware and demonstrate experimentally that our approach is competitive with native implementations.

References

[1]
M. Al-Kateb, A. Ghazal, and A. Crolotte. An efficient SQL rewrite approach for temporal coalescing in the teradata RDBMS. In DEXA, pages 375--383, 2012.
[2]
M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam, J. Chimanchode, and S. P. Pakala. Temporal query processing in Teradata. In EDBT, pages 573--578, 2013.
[3]
Y. Amsterdamer, D. Deutch, and V. Tannen. On the limitations of provenance for queries with difference. In TaPP, 2011.
[4]
Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate queries. In PODS, pages 153--164, 2011.
[5]
M. H. Böhlen, J. Gamper, and C. S. Jensen. Multi-dimensional aggregation for temporal data. In EDBT, pages 257--275, 2006.
[6]
M. H. Böhlen, J. Gamper, C. S. Jensen, and R. T. Snodgrass. Sql-based temporal query languages. In Encyclopedia of Database Systems, pages 2762--2768. 2009.
[7]
M. H. Böhlen and C. S. Jensen. Sequenced semantics. In Encyclopedia of Database Systems, pages 2619--2621. 2009.
[8]
M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Evaluating and enhancing the completeness of tsql2. Technical Report TR 95-5, Computer Science Department, University of Arizona, 1995.
[9]
M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Temporal statement modifiers. ACM Trans. Database Syst., 25(4):407--456, 2000.
[10]
M. H. Böhlen, R. T. Snodgrass, and M. D. Soo. Coalescing in temporal databases. In VLDB, pages 180--191, 1996.
[11]
P. Bouros and N. Mamoulis. A forward scan based plane sweep algorithm for parallel interval joins. PVLDB, 10(11):1346--1357, 2017.
[12]
I. T. Bowman and D. Toman. Optimizing temporal queries: efficient handling of duplicates. Data Knowl. Eng., 44(2):143--164, 2003.
[13]
F. Cafagna and M. H. Böhlen. Disjoint interval partitioning. VLDB J., 26(3):447--466, 2017.
[14]
T. P. P. Council. TPC Benchmark™H (Decision Support) Standard Specification Revision 1.17.3, 2017.
[15]
A. Das Sarma, M. Theobald, and J. Widom. Live: A lineage-supported versioned dbms. In SSDBM, pages 416--433, 2010.
[16]
A. Dignös, M. H. Böhlen, and J. Gamper. Temporal alignment. In SIGMOD, pages 433--444, 2012.
[17]
A. Dignös, M. H. Böhlen, and J. Gamper. Overlap interval partition join. In SIGMOD, pages 1459--1470, 2014.
[18]
A. Dignös, M. H. Böhlen, J. Gamper, and C. S. Jensen. Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries. ACM Trans. Database Syst., 41(4):26:1--26:46, 2016.
[19]
A. Dignös, B. Glavic, X. Niu, M. H. Böhlen, and J. Gamper. Snapshot semantics for temporal multiset relations (extended version). Technical Report CoRR, https://arxiv.org/pdf/1902.04938, 2019.
[20]
F. Geerts and A. Poggi. On database query languages for K-relations. Journal of Applied Logic, 8(2):173--185, 2010.
[21]
T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS, pages 31--40, 2007.
[22]
C. S. Jensen and R. T. Snodgrass. Snapshot equivalence. In Encyclopedia of Database Systems, page 2659. 2009.
[23]
C. S. Jensen and R. T. Snodgrass. Temporal query languages. In Encyclopedia of Database Systems, pages 3009--3012. 2009.
[24]
C. S. Jensen and R. T. Snodgrass. Timeslice operator. In Encyclopedia of Database Systems, pages 3120--3121. 2009.
[25]
M. Kaufmann, P. M. Fischer, N. May, A. Tonder, and D. Kossmann. Tpc-bih: A benchmark for bitemporal databases. In TPCTC, pages 16--31, 2013.
[26]
M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann, F. Färber, and N. May. Timeline index: a unified data structure for processing queries on temporal data in SAP HANA. In SIGMOD, pages 1173--1184, 2013.
[27]
E. V. Kostylev and P. Buneman. Combining dependent annotations for relational algebra. In ICDT, pages 196--207, 2012.
[28]
K. G. Kulkarni and J. Michels. Temporal features in SQL: 2011. SIGMOD Record, 41(3):34--43, 2012.
[29]
N. A. Lorentzos and Y. G. Mitsopoulos. SQL extension for interval data. IEEE Trans. Knowl. Data Eng., 9(3):480--499, 1997.
[30]
Microsoft. SQL Server 2016 - temporal tables. https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables, 2016.
[31]
Oracle. Database development guide - temporal validity support. https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967, 2016.
[32]
D. Piatov and S. Helmer. Sweeping-based temporal aggregation. In SSTD, pages 125--144, 2017.
[33]
D. Piatov, S. Helmer, and A. Dignös. An interval join optimized for modern hardware. In ICDE, pages 1098--1109, 2016.
[34]
M. Pilman, M. Kaufmann, F. Köhl, D. Kossmann, and D. Profeta. Partime: Parallel temporal aggregation. In SIGMOD, pages 999--1010, 2016.
[35]
PostgreSQL. Documentation manual postgresql - range types. https://www.postgresql.org/docs/current/static/rangetypes.html, 2012.
[36]
C. Saracco, M. Nicola, and L. Gandhi. A matter of time: Temporal data management in db2 10. http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf, 2012.
[37]
C. Sirangelo. Positive relational algebra. In Encyclopedia of Database Systems, pages 2124--2125. 2009.
[38]
R. T. Snodgrass. The temporal query language tquel. ACM Trans. Database Syst., 12(2):247--298, 1987.
[39]
R. T. Snodgrass, editor. The TSQL2 Temporal Query Language. 1995.
[40]
R. T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann, 1999.
[41]
R. T. Snodgrass, I. Ahn, G. Ariav, D. S. Batory, J. Clifford, C. E. Dyreson, R. Elmasri, F. Grandi, C. S. Jensen, W. Käfer, N. Kline, K. G. Kulkarni, T. Y. C. Leung, N. A. Lorentzos, J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada. TSQL2 language specification. SIGMOD Record, 23(1):65--86, 1994.
[42]
R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. Adding valid time to sql/temporal. ANSI X3H2-96-501r2, ISO/IEC JTC, 1, 1996.
[43]
M. D. Soo, C. S. Jensen, and R. T. Snodgrass. An algebra for tsql2. In The TSQL2 temporal query language, pages 505--546. 1995.
[44]
A. Steiner. A generalisation approach to temporal data models and their implementations. PhD thesis, ETH Zurich, 1998.
[45]
Teradata. Teradata database - temporal table support. http://www.info.teradata.com/download.cfm?ItemID=1006923, Jun 2015.
[46]
D. Toman. Point vs. interval-based query languages for temporal databases. In PODS, pages 58--67, 1996.
[47]
D. Toman. Point-based temporal extensions of SQL and their efficient implementation. In Temporal databases: research and practice, pages 211--237. 1998.
[48]
X. Zhou, F. Wang, and C. Zaniolo. Efficient temporal coalescing query support in relational database systems. In DEXA, pages 676--686, 2006.

Cited By

View all
  • (2024)LIT: Lightning-fast In-memory Temporal IndexingProceedings of the ACM on Management of Data10.1145/36392752:1(1-27)Online publication date: 26-Mar-2024
  • (2024)Efficiently Labeling and Retrieving Temporal Anomalies in Relational DatabasesInformation Systems Frontiers10.1007/s10796-024-10495-wOnline publication date: 31-May-2024
  • (2024)A Structure Based on B+ Trees to Represent a Large Number of k-Multisets Stored in Non-volatile MemoryRecent Challenges in Intelligent Information and Database Systems10.1007/978-981-97-5937-8_22(262-274)Online publication date: 13-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 12, Issue 6
February 2019
100 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 February 2019
Published in PVLDB Volume 12, Issue 6

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)1
Reflects downloads up to 02 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)LIT: Lightning-fast In-memory Temporal IndexingProceedings of the ACM on Management of Data10.1145/36392752:1(1-27)Online publication date: 26-Mar-2024
  • (2024)Efficiently Labeling and Retrieving Temporal Anomalies in Relational DatabasesInformation Systems Frontiers10.1007/s10796-024-10495-wOnline publication date: 31-May-2024
  • (2024)A Structure Based on B+ Trees to Represent a Large Number of k-Multisets Stored in Non-volatile MemoryRecent Challenges in Intelligent Information and Database Systems10.1007/978-981-97-5937-8_22(262-274)Online publication date: 13-Aug-2024
  • (2024)Parallel Processing of Temporal Anti-Joins in MemoryDatabase Systems for Advanced Applications10.1007/978-981-97-5552-3_6(86-102)Online publication date: 2-Jul-2024
  • (2023)Theory and Practice of Relational-to-RDF Temporal Data Exchange and Query AnsweringJournal of Data and Information Quality10.1145/359135915:2(1-27)Online publication date: 22-Jun-2023
  • (2022)Language-Integrated Query for Temporal DataProceedings of the 21st ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences10.1145/3564719.3568690(5-19)Online publication date: 29-Nov-2022
  • (2022)Unleashing the power of querying streaming data in a temporal database worldInformation Systems10.1016/j.is.2021.101872103:COnline publication date: 1-Jan-2022
  • (2022)What’s New in Temporal Databases?Advances in Databases and Information Systems10.1007/978-3-031-15740-0_5(45-58)Online publication date: 5-Sep-2022
  • (2022)Querying Temporal Anomalies in Healthcare Information Systems and BeyondAdvances in Databases and Information Systems10.1007/978-3-031-15740-0_16(209-222)Online publication date: 5-Sep-2022
  • (2021)Leveraging range joins for the computation of overlap joinsThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-021-00692-331:1(75-99)Online publication date: 28-Aug-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media