Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Mining Bursting Core in Large Temporal Graphs

Published: 01 September 2022 Publication History

Abstract

Temporal graphs are ubiquitous. Mining communities that are bursting in a period of time is essential for seeking real emergency events in temporal graphs. Unfortunately, most previous studies on community mining in temporal networks ignore the bursting patterns of communities. In this paper, we study the problem of seeking bursting communities in a temporal graph. We propose a novel model, called the (l, δ)-maximal bursting core, to represent a bursting community in a temporal graph. Specifically, an (l, δ)-maximal bursting core is a temporal subgraph in which each node has an average degree no less than δ in a time segment with length no less than l. To compute the (l, δ)-maximal bursting core, we first develop a novel dynamic programming algorithm that can reduce time complexity of calculating the segment density from O(|T|)2 to O(|T|). Then, we propose an efficient updating algorithm which can update the segment density in O(l) time. In addition, we develop an efficient algorithm to enumerate all (l, δ)-maximal bursting cores that are not dominated by the others in terms of l and δ. The results of extensive experiments on 9 real-life datasets demonstrate the effectiveness, efficiency and scalability of our algorithms.

References

[1]
Manoj K. Agarwal, Krithi Ramamritham, and Manish Bhide. 2012. Real Time Discovery of Dense Clusters in Highly Dynamic Graphs: Identifying Real World Events in Highly Dynamic Environments. Proc. VLDB Endow. 5, 10 (2012), 980--991.
[2]
Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. 2007. An event-based framework for characterizing the evolutionary behavior of interaction graphs. In SIGKDD 2007. 913--921.
[3]
Albert-Lászlo Barabási. 2005. The origin of bursts and heavy tails in human dynamics. Nature 435, 7039 (2005), 207--211.
[4]
Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. 2015. Efficient Enumeration of Maximal k-Plexes. In SIGMOD 2015. 431--444.
[5]
Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining Dense Subgraphs on One-Pass Dynamic Streams. In STOC 2015. 173--182.
[6]
Petko Bogdanov, Misael Mongiovì, and Ambuj K. Singh. 2011. Mining Heavy Subgraphs in Time-Evolving Networks. In ICDM 2011. 81--90.
[7]
Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized Core Decomposition. In SIGMOD 2019. 1006--1023.
[8]
Zhengzhang Chen, Kevin A. Wilson, Ye Jin, William Hendrix, and Nagiza F. Samatova. 2010. Detecting and Tracking Community Dynamics in Evolutionary Networks. In ICDMW. 318--327.
[9]
James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core decomposition in massive networks. In ICDE 2011. 51--62.
[10]
James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu. 2011. Finding Maximal Cliques in Massive Networks. ACM Trans. Database Syst. 36, 4 (2011), 21:1--21:34.
[11]
Lingyang Chu, Yanyan Zhang, Yu Yang, Lanjun Wang, and Jian Pei. 2019. Online Density Bursting Subgraph Detection from Temporal Graphs. Proc. VLDB Endow. 12, 13 (2019), 2353--2365.
[12]
Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrignani, and Riccardo Torlone. 2017. Fast Enumeration of Large k-Plexes. In SIGKDD 2017. 115--124.
[13]
Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient Densest Subgraph Computation in Evolving Graphs. In WWW 2015. 300--310.
[14]
Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco Gullo. 2018. Mining (maximal) Span-cores from Temporal Networks. In CIKM 2018. 107--116.
[15]
Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core Decomposition and Densest Subgraph in Multilayer Networks. In CIKM 2017. 1807--1816.
[16]
Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano. 2020. Core Decomposition in Multilayer Networks: Theory, Algorithms, and Applications. ACM Trans. Knowl. Discov. Data 14, 1 (2020), 11:1--11:40.
[17]
Saket Gurukar, Sayan Ranu, and Balaraman Ravindran. 2015. COMMIT: A Scalable Approach to Mining Communication Motifs from Dynamic Networks. In SIGMOD 2015. 475--489.
[18]
Petter Holme and Jari Saramaki. 2012. Temporal networks. Physics Reports 519 (2012), 97--125.
[19]
Silu Huang, Ada Wai-Chee Fu, and Ruifeng Liu. 2015. Minimum Spanning Trees in Temporal Graphs. In SIGMOD 2015. 419--430.
[20]
Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying K-truss Community in Large and Dynamic Graphs. In SIGMOD 2014. 1311--1322.
[21]
Rohit Kumar, Toon Calders, Aristides Gionis, and Nikolaj Tatti. 2015. Maintaining Sliding-Window Neighborhood Profiles in Interaction Networks. In ECML/PKDD 2015. 719--735.
[22]
Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persistent Community Search in Temporal Networks. In ICDE 2018. 797--808.
[23]
Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in Large Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 26, 10 (2014), 2453--2465.
[24]
Yuan Li, Jinsheng Liu, Huiqun Zhao, Jing Sun, Yuhai Zhao, and Guoren Wang. 2021. Efficient continual cohesive subgraph search in large temporal graphs. World Wide Web 24, 5 (2021), 1483--1509.
[25]
Yu-Ru Lin, Yun Chi, Shenghuo Zhu, Hari Sundaram, and Belle L. Tseng. 2008. Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In WWW 2008. 685--694.
[26]
Xuanming Liu, Tingjian Ge, and Yinghui Wu. 2019. Finding Densest Lasting Subgraphs in Dynamic Graphs: A Stochastic Approach. In ICDE 2019. 782--793.
[27]
Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. 2017. Fast Computation of Dense Temporal Subgraphs. In ICDE 2017. 361--372.
[28]
Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, and Michalis Vazirgiannis. 2020. The core decomposition of networks: theory, algorithms and applications. VLDB J. 29, 1 (2020), 61--92.
[29]
Hongchao Qin, Rong-Hua Li, Guoren Wang, Lu Qin, Yurong Cheng, and Ye Yuan. 2019. Mining Periodic Cliques in Temporal Networks. In ICDE 2019. 1130--1141.
[30]
Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Densest Subgraph Discovery. In SIGKDD 2015. 965--974.
[31]
Giulio Rossetti and Rémy Cazabet. 2018. Community Discovery in Dynamic Networks: A Survey. ACM Comput. Surv. 51, 2 (2018), 35:1--35:37.
[32]
Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio, and Nikolaj Tatti. 2018. Finding Events in Temporal Networks: Segmentation Meets Densest-Subgraph Discovery. In ICDM 2018. 397--406.
[33]
Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. 2017. Finding Dynamic Dense Subgraphs. ACM Transactions on Knowledge Discovery from Data 11, 3 (2017), 27:1--27:30.
[34]
Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for Hierarchical Dense Subgraph Discovery. Proc. VLDB Endow. 12, 1 (2018), 43--56.
[35]
Stephen B. Seidman. 1983. Network structure and minimum degree. Social Networks 5, 3 (1983), 269--287.
[36]
Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria A. Tsiarli. 2013. Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In SIGKDD 2013. 104--112.
[37]
Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2016. I/O efficient Core Graph Decomposition at web scale. In ICDE 2016. 133--144.
[38]
Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and Hejun Wu. 2015. Core decomposition in large temporal graphs. In IEEE BigData 2015. 649--658.
[39]
Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Communities Based on Ground-Truth. In ICDM 2012. 745--754.
[40]
Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng Zhou, and John C. S. Lui. 2016. Diversified Temporal Subgraph Pattern Mining. In SIGKDD 2016. 1965--1974.
[41]
Yajun Yang, Jeffrey Xu Yu, Hong Gao, Jian Pei, and Jianzhong Li. 2014. Mining most frequently changing component in evolving graphs. World Wide Web 17, 3 (2014), 351--376.
[42]
Michael Yu, Dong Wen, Lu Qin, Ying Zhang, Wenjie Zhang, and Xuemin Lin. 2021. On Querying Historical K-Cores. Proc. VLDB Endow. 14, 11 (2021), 2033--2045.

Cited By

View all
  • (2025)Bursting Flow Query on Large Temporal Flow NetworksProceedings of the ACM on Management of Data10.1145/37097373:1(1-26)Online publication date: 11-Feb-2025
  • (2024)RUSH: Real-Time Burst Subgraph Detection in Dynamic GraphsProceedings of the VLDB Endowment10.14778/3681954.368202817:11(3657-3665)Online publication date: 1-Jul-2024
  • (2024)Efficient Maximal Frequent Group Enumeration in Temporal Bipartite GraphsProceedings of the VLDB Endowment10.14778/3681954.368199717:11(3243-3255)Online publication date: 30-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 15, Issue 13
September 2022
278 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 September 2022
Published in PVLDB Volume 15, Issue 13

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)54
  • Downloads (Last 6 weeks)10
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Bursting Flow Query on Large Temporal Flow NetworksProceedings of the ACM on Management of Data10.1145/37097373:1(1-26)Online publication date: 11-Feb-2025
  • (2024)RUSH: Real-Time Burst Subgraph Detection in Dynamic GraphsProceedings of the VLDB Endowment10.14778/3681954.368202817:11(3657-3665)Online publication date: 1-Jul-2024
  • (2024)Efficient Maximal Frequent Group Enumeration in Temporal Bipartite GraphsProceedings of the VLDB Endowment10.14778/3681954.368199717:11(3243-3255)Online publication date: 30-Aug-2024
  • (2024)Evolution Forest Index: Towards Optimal Temporal k-Core Component Search via Time-Topology Isomorphic ComputationProceedings of the VLDB Endowment10.14778/3681954.368196717:11(2840-2853)Online publication date: 1-Jul-2024
  • (2024)Efficient Index for Temporal Core Queries over Bipartite GraphsProceedings of the VLDB Endowment10.14778/3681954.368196517:11(2813-2825)Online publication date: 1-Jul-2024
  • (2024)QTCS: Efficient Query-Centered Temporal Community SearchProceedings of the VLDB Endowment10.14778/3648160.364816317:6(1187-1199)Online publication date: 1-Feb-2024
  • (2024)Mining Temporal NetworksCompanion Proceedings of the ACM Web Conference 202410.1145/3589335.3641245(1260-1263)Online publication date: 13-May-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media