Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Route Travel Time Estimation on a Road Network Revisited: Heterogeneity, Proximity, Periodicity and Dynamicity

Published: 01 November 2022 Publication History

Abstract

In this paper, we revisit the problem of route travel time estimation on a road network and aim to boost its accuracy by capturing and utilizing spatio-temporal features from four significant aspects: heterogeneity, proximity, periodicity and dynamicity.
Spatial-wise, we consider two forms of heterogeneity at link level in a road network: the turning ways between different links are heterogeneous which can make the travel time of the same link various; different links contain heterogeneous attributes and thereby lead to different travel time. In addition, we take into account the proximity: neighboring links have similar traffic patterns and lead to similar travel speeds. To this end, we build a link-connection graph to capture such heterogeneity and proximity.
Temporal-wise, the weekly/daily periodicity of temporal background information (e.g., rush hours) and dynamic traffic conditions have significant impact on the travel time, which result in static and dynamic spatio-temporal features respectively. To capture such impacts, we regard the travel time/speed as a combination of static and dynamic parts, and extract many spatio-temporal relevant features for the prediction task.
Talking about the methodology, it remains an open problem to build a generic learning model to boost the estimation accuracy. Hence, we design a novel encoder-decoder framework - The encoder uses the sequence attention model to encode dynamic features from the temporal-wise perspective. The decoder first uses the heterogeneous graph attention model to decode the static part of travel speed based on static spatio-temporal features, and then leverages the sequence attention model to decode the estimated travel time from spatial-wise perspective. Extensive experiments on real datasets verify the superiority of our method as well as the importance of the four aspects outlined above.

References

[1]
2021. GAIA. https://outreach.didichuxing.com/research/opendata/.
[2]
2021. OpenStreetMap. https://www.openstreetmap.org.
[3]
Pouria Amirian, Anahid Basiri, and Jeremy Morley. 2017. Predictive analytics for enhancing travel time estimation in navigation apps of Apple, Google, and Microsoft. In SIGSPATIAL, Stephan Winter, Gautam S. Thakur, and Nicole Ronald (Eds.). 31--36.
[4]
Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization. CoRR abs/1607.06450 (2016).
[5]
Shaojie Dai, Yanwei Yu, Hao Fan, and Junyu Dong. 2022. Spatio-Temporal Representation Learning with Social Tie for Personalized POI Recommendation. Data Sci. Eng. 7, 1 (2022), 44--56.
[6]
Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-Index: A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor Queries. In EDBT, Angela Bonifati, Yongluan Zhou, Marcos Antonio Vaz Salles, Alexander Böhm, Dan Olteanu, George H. L. Fletcher, Arijit Khan, and Bin Yang (Eds.). 407--410.
[7]
Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned Index. In SIGMOD, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). 969--984.
[8]
Weishan Dong, Jian Li, Renjie Yao, Changsheng Li, Ting Yuan, and Lanjun Wang. 2016. Characterizing driving styles with deep learning. CoRR (2016).
[9]
Ju Fan, Guoliang Li, Lizhu Zhou, Shanshan Chen, and Jun Hu. 2012. SEAL: Spatio-Textual Similarity Search. Proc. VLDB Endow. 5, 9 (2012), 824--835.
[10]
Xiaomin Fang, Jizhou Huang, Fan Wang, Lingke Zeng, Haijin Liang, and Haifeng Wang. 2020. ConSTGAT: Contextual Spatial-Temporal Graph Attention Network for Travel Time Estimation at Baidu Maps. In KDD, Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (Eds.). 2697--2705.
[11]
Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. VLDB 13, 8 (2020), 1162--1175.
[12]
Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In SIGMOD, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). 1189--1206.
[13]
Qiang Gao, Fan Zhou, Kunpeng Zhang, Goce Trajcevski, Xucheng Luo, and Fengli Zhang. 2017. Identifying Human Mobility via Trajectory Embeddings. In IJCAI. 1689--1695.
[14]
Ali Hadian and Thomas Heinis. 2020. MADEX: Learning-augmented Algorithmic Index Structures. In AIDB@VLDB 2020, Bingsheng He, Berthold Reinwald, and Yingjun Wu (Eds.).
[15]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Mappings in Deep Residual Networks. In ECCV. 630--645.
[16]
Zhixiang He, Chi-Yin Chow, and Jia-Dong Zhang. 2019. STANN: A Spatio-Temporal Attentive Neural Network for Traffic Prediction. IEEE Access 7 (2019), 4795--4806.
[17]
Huiqi Hu, Guoliang Li, Zhifeng Bao, Jianhua Feng, Yongwei Wu, Zhiguo Gong, and Yaoqiang Xu. 2016. Top-k Spatio-Textual Similarity Join. IEEE Trans. Knowl. Data Eng. 28, 2 (2016), 551--565.
[18]
YuRui Huang, Jie Zhang, HengDa Bao, Yang Yang, and Jian Yang. 2021. Complementary Fusion of Deep Network and Tree Model for ETA Prediction. In SIGSPATIAL. 638--641.
[19]
Ishan Jindal, Xuewen Chen, Matthew Nokleby, Jieping Ye, et al. 2017. A unified neural network approach for estimating travel time and distance for a taxi trip. CoRR (2017).
[20]
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR(Poster).
[21]
Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. In SIGMOD, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). 489--504.
[22]
Guoliang Li, Jianhua Feng, and Jing Xu. 2012. DESKS: Direction-Aware Spatial Keyword Search. In ICDE. 474--485.
[23]
Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018. Multi-task representation learning for travel time estimation. In SIGKDD. 1695--1704.
[24]
Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In ICLR.
[25]
Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-Dimensional Indexes. In SIGMOD, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). 985--1000.
[26]
Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, and Junbo Zhang. 2019. Urban traffic prediction from spatio-temporal data using deep meta learning. In SIGKDD. 1720--1730.
[27]
Varun Pandey, Alexander van Renen, Andreas Kipf, Jialin Ding, Ibrahim Sabek, and Alfons Kemper. 2020. The Case for Learned Spatial Indexes. In AIDB@VLDB 2020, Bingsheng He, Berthold Reinwald, and Yingjun Wu (Eds.).
[28]
Xuan Song, Hiroshi Kanasugi, and Ryosuke Shibasaki. 2016. DeepTransport: Prediction and Simulation of Human Mobility and Transportation Mode at a Citywide Level. In IJCAI. 2618--2624.
[29]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In NeurIPS. 5998--6008.
[30]
Dong Wang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. 2018. When Will You Arrive? Estimating Travel Time Based on Deep Neural Networks. In AAAI, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). 2500--2507.
[31]
Hongjian Wang, Xianfeng Tang, Yu-Hsuan Kuo, Daniel Kifer, and Zhenhui Li. 2019. A Simple Baseline for Travel Time Estimation using Large-scale Trip Data. TITS 10, 2 (2019), 19:1--19:22.
[32]
Yilun Wang, Yu Zheng, and Yexiang Xue. 2014. Travel time estimation of a path using sparse trajectories. In SIGKDD, Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani (Eds.). 25--34.
[33]
Zheng Wang, Kun Fu, and Jieping Ye. 2018. Learning to Estimate the Travel Time. In SIGKDD, Yike Guo and Faisal Farooq (Eds.). 858--866.
[34]
Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. 2017. Modeling Trajectories with Recurrent Neural Networks. In IJCAI. 3083--3090.
[35]
Ying Xu and Dongsheng Li. 2019. Incorporating graph attention and recurrent architectures for city-wide taxi demand prediction. Geo-Inf 8, 9 (2019), 414.
[36]
Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li, Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya. 2020. Qd-tree: Learning Data Layouts for Big Data Analytics. In SIGMOD, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). 193--208.
[37]
Haitao Yuan and Guoliang Li. 2019. Distributed in-memory trajectory similarity search and join on road network. In ICDE. 1262--1273.
[38]
Haitao Yuan and Guoliang Li. 2021. A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation. Data Sci. Eng. 6, 1 (2021), 63--85.
[39]
Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2020. Effective Travel Time Estimation: When Historical Trajectories over Road Networks Matter. In SIGMOD. 2135--2149.
[40]
Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2021. An Effective Joint Prediction Model for Travel Demands and Traffic Flows. In ICDE.
[41]
Hanyuan Zhang, Hao Wu, Weiwei Sun, and Baihua Zheng. 2018. DeepTravel: a Neural Network Based Travel Time Estimation Model with Auxiliary Supervision. In IJCAI, Jérôme Lang (Ed.). ijcai.org, 3655--3661.
[42]
Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-based prediction model for spatio-temporal data. In SIGSPATIAL. 1--4.

Cited By

View all
  • (2024)Nuhuo: An Effective Estimation Model for Traffic Speed Histogram Imputation on A Road NetworkProceedings of the VLDB Endowment10.14778/3654621.365462817:7(1605-1617)Online publication date: 1-Mar-2024
  • (2023)Automatic Road Extraction with Multi-Source Data Revisited: Completeness, Smoothness and DiscriminationProceedings of the VLDB Endowment10.14778/3611479.361150416:11(3004-3017)Online publication date: 24-Aug-2023
  • (2023)Topology augmented dynamic spatial-temporal network for passenger flow forecasting in urban rail transitApplied Intelligence10.1007/s10489-023-04651-z53:21(24655-24670)Online publication date: 1-Nov-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 16, Issue 3
November 2022
181 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 November 2022
Published in PVLDB Volume 16, Issue 3

Badges

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)90
  • Downloads (Last 6 weeks)8
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Nuhuo: An Effective Estimation Model for Traffic Speed Histogram Imputation on A Road NetworkProceedings of the VLDB Endowment10.14778/3654621.365462817:7(1605-1617)Online publication date: 1-Mar-2024
  • (2023)Automatic Road Extraction with Multi-Source Data Revisited: Completeness, Smoothness and DiscriminationProceedings of the VLDB Endowment10.14778/3611479.361150416:11(3004-3017)Online publication date: 24-Aug-2023
  • (2023)Topology augmented dynamic spatial-temporal network for passenger flow forecasting in urban rail transitApplied Intelligence10.1007/s10489-023-04651-z53:21(24655-24670)Online publication date: 1-Nov-2023

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media