Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access October 11, 2022

On L1-Embeddability of Unions of L1-Embeddable Metric Spaces and of Twisted Unions of Hypercubes

  • Mikhail I. Ostrovskii EMAIL logo and Beata Randrianantoanina

Abstract

We study properties of twisted unions of metric spaces introduced in [Johnson, Lindenstrauss, and Schechtman 1986], and in [Naor and Rabani 2017]. In particular, we prove that under certain natural mild assumptions twisted unions of L1-embeddable metric spaces also embed in L1 with distortions bounded above by constants that do not depend on the metric spaces themselves, or on their size, but only on certain general parameters. This answers a question stated in [Naor 2015] and in [Naor and Rabani 2017].

In the second part of the paper we give new simple examples of metric spaces such that their every embedding into Lp, 1 ≤ p < ∞, has distortion at least 3, but which are a union of two subsets, each isometrically embeddable in Lp. This extends the result of [K. Makarychev and Y. Makarychev 2016] from Hilbert spaces to Lp-spaces, 1 ≤ p < ∞.

References

[1] S. Arora, L. Lovász, I. Newman, Y. Rabani, Y. Rabinovich, and S. Vempala, Local versus global properties of metric spaces, SIAM J. Comput. 41 (2012), no. 1, 250–271. (Conference version in: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 2006, pp. 41–50.)10.1137/090780304Search in Google Scholar

[2] Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000.10.1090/coll/048Search in Google Scholar

[3] Yu. A. Brudnyi, N. Ya. Krugljak, Interpolation functors and interpolation spaces. Vol. I. Translated from the Russian by Natalie Wadhwa.With a preface by Jaak Peetre. North-HollandMathematical Library, 47. North-Holland Publishing Co., Amsterdam, 1991.Search in Google Scholar

[4] G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-extension problem. SIAM J. Comput., 34 (2004/05), 358–372.10.1137/S0097539701395978Search in Google Scholar

[5] M. Charikar, K. Makarychev, Y. Makarychev, Local global tradeoffs in metric embeddings. SIAM J. Comput. 39 (2010), no. 6, 2487–2512.Search in Google Scholar

[6] E. W. Chittenden, On the equivalence of Écart and voisinage. Trans. Amer. Math. Soc. 18 (1917), no. 2, 161–166.Search in Google Scholar

[7] M. Dadarlat, E. Guentner, Uniform embeddability of relatively hyperbolic groups. J. Reine Angew. Math. 612 (2007), 1–15.Search in Google Scholar

[8] M. Fréchet, Sur quelques points du calcul fonctionnel, Rendiconti del CircoloMatematico di Palermo, 22 (2dsemester, 1906), pp. 1-74.10.1007/BF03020264Search in Google Scholar

[9] M. Fréchet, Sur les classes V normales. (French) [Normal V-classes] Trans. Amer. Math. Soc. 14 (1913), no. 3, 320–324.Search in Google Scholar

[10] D. J. H. Garling, Stable Banach spaces, random measures and Orlicz function spaces, in: Probability measures on groups (Oberwolfach, 1981), pp. 121–175, Lecture Notes in Math., 928, Springer, Berlin-New York, 1982.10.1007/BFb0093223Search in Google Scholar

[11] S. Guerre-Delabrière, Classical sequences in Banach spaces.With a foreword by Haskell P. Rosenthal. Monographs and Textbooks in Pure and Applied Mathematics, 166. Marcel Dekker, Inc., New York, 1992.Search in Google Scholar

[12] W.B. Johnson, J. Lindenstrauss, G. Schechtman, Extensions of Lipschitz maps into Banach spaces. Israel J. Math. 54 (1986), no. 2, 129–138.Search in Google Scholar

[13] N. J. Kalton, N. T. Peck, J. W. Roberts, An F-space sampler. London Mathematical Society Lecture Note Series, 89. Cambridge University Press, Cambridge, 1984. xii+240 pp.10.1017/CBO9780511662447Search in Google Scholar

[14] S. A. Khot, N. K. Vishnoi, The unique games conjecture, integrability gap for cut problems and embeddability of negativetype metrics into ℓ1. J. ACM 62 (2015), no. 1, Art. 8, 39 pp. (Conference version: In Proceedings of FOCS. 2005, 53–62.)10.1145/2629614Search in Google Scholar

[15] J.-L. Krivine, B. Maurey, Espaces de Banach stables, Israel J. Math., 39 (1981), 273–295.10.1007/BF02761674Search in Google Scholar

[16] U. Lang, Extendability of large-scale Lipschitz maps. Trans. Amer. Math. Soc., 351 (1999), 3975–3988.10.1090/S0002-9947-99-02265-5Search in Google Scholar

[17] U. Lang, C. Plaut, Bilipschitz embeddings of metric spaces into space forms. Geom. Dedicata, 87 (2001), no. 1-3, 285–307.Search in Google Scholar

[18] J. Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J., 11 (1964), 263–287.10.1307/mmj/1028999141Search in Google Scholar

[19] K. Makarychev, Y. Makarychev, Union of Euclidean metric spaces is Euclidean, Discrete Analysis 2016:14, 14pp.; arXiv:1602.08426.10.19086/da.876Search in Google Scholar

[20] M. Mendel, A. Naor, Euclidean quotients of finite metric spaces. Adv. Math. 189 (2004), no. 2, 451–494.Search in Google Scholar

[21] M. Mendel, A. Naor, Ultrametric skeletons. Proc. Natl. Acad. Sci. USA 110 (2013), no. 48, 19256–19262.Search in Google Scholar

[22] M. Mendel, A. Naor, Expanders with respect to Hadamard spaces and random graphs. DukeMath. J. 164 (2015), no. 8, 1471–1548.Search in Google Scholar

[23] A. Naor, L1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry, in: Proceedings of the International Congress of Mathematicians, 2010, Hyderabad India, vol. III, 2011, pp. 1549–1575.10.1142/9789814324359_0110Search in Google Scholar

[24] A. Naor, Metric Embeddings and Lipschitz Extensions, Lecture Notes prepared by Alexandros Eskenazis, Princeton, 2015; available at http://web.math.princeton.edu/~naor/Search in Google Scholar

[25] A. Naor, Y. Rabani, On Lipschitz extension from finite subsets. Israel J. Math. 219 (2017), no. 1, 115–161.Search in Google Scholar

[26] M. I. Ostrovskii, Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces, de Gruyter Studies in Mathematics,Search in Google Scholar

[27] I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc., 44 (1938), 522–553.10.1090/S0002-9947-1938-1501980-0Search in Google Scholar

[28] L. Trevisan, On Khot’s unique games conjecture. Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 1, 91–111.Search in Google Scholar

Received: 2021-12-16
Accepted: 2022-09-01
Published Online: 2022-10-11

© 2022 Mikhail I. Ostrovskii et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 10.10.2024 from https://www.degruyter.com/document/doi/10.1515/agms-2022-0145/html
Scroll to top button