Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 8, 2022

Integrierte Steuerungsarchitektur für ein agiles Demontagesystem mit autonomer Produktbefundung

Integrated control architecture for an agile disassembly system with autonomous product inspection
  • Marco Wurster

    Marco Wurster, M.Sc. ist wissenschaftlicher Mitarbeiter im Bereich Produktionssystemplanung am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT). Forschungsschwerpunkte: Agile Produktionssysteme, autonome Produktionssteuerung, Remanufacturing.

    EMAIL logo
    , Jan-Felix Klein

    Jan-Felix Klein, M.Sc. ist wissenschaftlicher Mitarbeiter in der Abteilung Robotik und interaktive Systeme am Institut für Fördertechnik und Logistiksysteme (IFL) des Karlsruher Instituts für Technologie (KIT). Forschungsschwerpunkte: Autonome mobile Robotik, Intralogistik dezentraler verteilter Systeme, Remanufacturing.

    , Jan-Philipp Kaiser

    Jan-Philipp Kaiser, M.Sc. ist wissenschaftlicher Mitarbeiter im Bereich Qualitätssicherung am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT). Forschungsschwerpunkte: Optische Messtechnik, autonome Messsysteme, Remanufacturing.

    , Simon Mangold

    Simon Mangold, M.Sc ist wissenschaftlicher Mitarbeiter im Bereich Maschinen, Anlagen und Prozessautomatisierung am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT). Forschungsschwerpunkte: Automatisierte Demontage, lernende Roboter, Remanufacturing.

    , Kai Furmans

    Prof. Dr.-Ing. Kai Furmans leitet das Institut für Fördertechnik und Logistiksysteme (IFL) des Karlsruher Instituts für Technologie (KIT).

    , Michael Heizmann

    Prof. Dr.-Ing. Michael Heizmann ist Professor für Mechatronische Messsysteme und Leiter des Instituts für Industrielle Informationstechnik IIIT des Karlsruher Instituts für Technologie (KIT). Seine Fachgebiete umfassen Messtechnik, Signal- und Bildverarbeitung sowie Informationsfusion.

    , Jürgen Fleischer

    Prof. Dr.-Ing. Jürgen Fleischer leitet die Forschungsgruppe Maschinen, Anlagen und Prozessautomatisierung am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT) und ist verantwortlich für die Bereiche Werkzeugmaschinen und Mechatronik, Leichtbaufertigung und Elektromobilität.

    and Gisela Lanza

    Prof. Dr.-Ing. Gisela Lanza leitet die Forschungsgruppe Produktionssysteme am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT) und ist verantwortlich für die Bereiche Qualitätssicherung, Produktionssystemplanung und Globale Produktionsstrategien.

Zusammenfassung

Für ein wettbewerbsfähiges Remanufacturing von Gebrauchtprodukten bei ungewissen Produktzuständen bedarf es einer hohen Flexibilität und Reaktionsfähigkeit. Im Rahmen dieses Artikels wird eine integrierte Steuerungsarchitektur für ein modular aufgebautes agiles Demontagesystem mit autonomer Produktbefundung und lernenden Produktionsressourcen vorgestellt. Der Ansatz umfasst sowohl eine Produktionssystemsteuerung für den Materialfluss als auch vertikal bis auf Feldebene integrierte Subarchitekturen für die Steuerung der Stations- und Intralogistikprozesse.

Abstract

Competitive remanufacturing of used products with uncertain conditions requires a high degree of flexibility and responsiveness. This article describes an integrated control architecture for a modular, agile disassembly system with autonomous product inspection and learning production resources. The approach includes a material flow control and vertically-integrated sub-architectures to control the station and intralogistics operations.

Funding source: Carl-Zeiss-Stiftung

Funding statement: Das Projekt AgiProbot wird durch die Carl-Zeiss-Stiftung gefördert.

Über die Autoren

Marco Wurster

Marco Wurster, M.Sc. ist wissenschaftlicher Mitarbeiter im Bereich Produktionssystemplanung am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT). Forschungsschwerpunkte: Agile Produktionssysteme, autonome Produktionssteuerung, Remanufacturing.

Jan-Felix Klein

Jan-Felix Klein, M.Sc. ist wissenschaftlicher Mitarbeiter in der Abteilung Robotik und interaktive Systeme am Institut für Fördertechnik und Logistiksysteme (IFL) des Karlsruher Instituts für Technologie (KIT). Forschungsschwerpunkte: Autonome mobile Robotik, Intralogistik dezentraler verteilter Systeme, Remanufacturing.

Jan-Philipp Kaiser

Jan-Philipp Kaiser, M.Sc. ist wissenschaftlicher Mitarbeiter im Bereich Qualitätssicherung am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT). Forschungsschwerpunkte: Optische Messtechnik, autonome Messsysteme, Remanufacturing.

Simon Mangold

Simon Mangold, M.Sc ist wissenschaftlicher Mitarbeiter im Bereich Maschinen, Anlagen und Prozessautomatisierung am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT). Forschungsschwerpunkte: Automatisierte Demontage, lernende Roboter, Remanufacturing.

Kai Furmans

Prof. Dr.-Ing. Kai Furmans leitet das Institut für Fördertechnik und Logistiksysteme (IFL) des Karlsruher Instituts für Technologie (KIT).

Michael Heizmann

Prof. Dr.-Ing. Michael Heizmann ist Professor für Mechatronische Messsysteme und Leiter des Instituts für Industrielle Informationstechnik IIIT des Karlsruher Instituts für Technologie (KIT). Seine Fachgebiete umfassen Messtechnik, Signal- und Bildverarbeitung sowie Informationsfusion.

Jürgen Fleischer

Prof. Dr.-Ing. Jürgen Fleischer leitet die Forschungsgruppe Maschinen, Anlagen und Prozessautomatisierung am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT) und ist verantwortlich für die Bereiche Werkzeugmaschinen und Mechatronik, Leichtbaufertigung und Elektromobilität.

Gisela Lanza

Prof. Dr.-Ing. Gisela Lanza leitet die Forschungsgruppe Produktionssysteme am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT) und ist verantwortlich für die Bereiche Qualitätssicherung, Produktionssystemplanung und Globale Produktionsstrategien.

Literatur

1. Bernshausen, J., A. Haller, T. Holm, M. Hoernicke, M. Obst and J. Ladiges. 2016. Namur Modul Type Package – Definition. atp edition 58: 72. ISSN: 2190-4111. DOI: 10.17560/atp.v58i01-02.554.Search in Google Scholar

2. Borgo, S. and P. Leitão. 2007. Foundations for a Core Ontology of Manufacturing. In: (R. Sharda, S. Voß, R. Sharman, R. Kishore and R. Ramesh eds) Ontologies. Integrated Series in Information Systems 14, Springer US, Boston, MA, pp. 751–775. ISBN: 978-0-387-37019-4. DOI: 10.1007/978-0-387-37022-4_27.Search in Google Scholar

3. Colledani, M. and O. Battaïa. 2016. A decision support system to manage the quality of End-of-Life products in disassembly systems. CIRP Annals 65(1): 41–44. ISSN: 0007-8506.10.1016/j.cirp.2016.04.121Search in Google Scholar

4. de Ryck, M., M. Versteyhe and F. Debrouwere. 2020. Automated guided vehicle systems, state-of-the-art control algorithms and techniques. Journal of Manufacturing Systems 54: 152–173. ISSN: 02786125. DOI: 10.1016/j.jmsy.2019.12.002.Search in Google Scholar

5. DIN Deutsches Institut für Normung. Chargenorientierte Fahrweise: Teil 1: Modelle und Terminologie. 2000-01-00.Search in Google Scholar

6. Döbrich, U., R. Heidel, M. Hankel and M. Hoffmeister. 2017. Basiswissen RAMI 4.0: Referenzarchitekturmodell und Industrie 4.0-Komponente Industrie 4.0. Beuth Verlag.Search in Google Scholar

7. Fragapane, G., R. de Koster, F. Sgarbossa and J.O. Strandhagen. 2021. Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. European Journal of Operational Research 294(2): 405–426. ISSN: 03772217. DOI: 10.1016/j.ejor.2021.01.019.Search in Google Scholar

8. Gibbons, T., G. Pierce, K. Worden and I. Antoniadou. 2018. A Gaussian Mixture Model for Automated Corrosion Detection in Remanufacturing. In: Advances in Manufacturing Technology XXXII. IOS Press, pp. 63–68.Search in Google Scholar

9. Globisch, S., S. Thäter and F. Döpper. 2019. Optical Inspection for the Characterization and Classification of Component Surfaces in the Field of Remanufacturing. In: (R. Schmitt and G. Schuh, eds) Advances in Production Research. Springer International Publishing, Cham, pp. 44–51. ISBN: 978-3-030-03451-1.10.1007/978-3-030-03451-1_5Search in Google Scholar

10. Greschke, P. 2016. Matrix-Produktion als Konzept einer taktunabhängigen Fließfertigung. Dissertation, Technische Universität Braunschweig.Search in Google Scholar

11. Groß, S., W. Gerke and P. Plapper. 2020. Agent-based, hybrid control architecture for optimized and flexible production scheduling and control in remanufacturing. Journal of Remanufacturing. ISSN: 2210-4690. doi: 10.1007/s13243-020-00081-z.Search in Google Scholar

12. Guide, V.D.R. 2000. Production planning and control for remanufacturing: industry practice and research needs. Journal of Operations Management 18(4): 467–483. ISSN: 02726963. DOI: 10.1016/S0272-6963(00)00034-6.Search in Google Scholar

13. Järvenpää, E., N. Siltala, O. Hylli and M. Lanz. 2019. The development of an ontology for describing the capabilities of manufacturing resources. Journal of Intelligent Manufacturing 30(2): 959–978. ISSN: 0956-5515. DOI: 10.1007/s10845-018-1427-6.Search in Google Scholar

14. Pfrommer, J., D. Stogl, K. Aleksandrov, S.E. Navarro and J. Beyerer. 2015. Plug & produce by modelling skills and service-oriented orchestration of reconfigurable manufacturing systems. at - Automatisierungstechnik 63(10): 790–800. ISSN: 0178-2312. DOI: 10.1515/auto-2014-1157. URL: https://www.researchgate.net/publication/282855068_Plug_produce_by_modelling_skills_and_service-oriented_orchestration_of_reconfigurable_manufacturing_systems.Search in Google Scholar

15. Kaiser, J.-P., S.N. Becker, M. Wurster, N. Stricker and G. Lanza. 2021. Framework for simulation-based Trajectory Planning and Execution of Robots equipped with a Laser Scanner for Measurement and Inspection. Procedia CIRP 103: 292–297. DOI: 10.1016/j.procir.2021.10.047.Search in Google Scholar

16. Kaiser, J.-P., S. Lang, M. Wurster and G. Lanza. 2022. A Concept for Autonomous Quality Control for Core Inspection in Remanufacturing. Procedia CIRP 105: 374–379. ISSN: 2212-8271. DOI: 10.1016/j.procir.2022.02.062.Search in Google Scholar

17. Kim, H.-J., S. Chiotellis and G. Seliger. 2009. Dynamic process planning control of hybrid disassembly systems. The International Journal of Advanced Manufacturing Technology 40(9-10): 1016–1023. ISSN: 0268-3768. DOI: 10.1007/s00170-008-1407-7.Search in Google Scholar

18. Kim, H.-J., M. Ciupek, A. Buchholz and G. Seliger. 2006. Adaptive disassembly sequence control by using product and system information. Robotics and Computer-Integrated Manufacturing 22(3): 267–278. ISSN: 0736-5845. DOI: 10.1016/j.rcim.2005.06.003.Search in Google Scholar

19. Klein, J.-F., M. Wurster, N. Stricker, G. Lanza and K. Furmans. 2021. Towards Ontology-based Autonomous Intralogistics for Agile Remanufacturing Production Systems. In: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, pp. 01–07. ISBN: 978-1-7281-2989-1. DOI: 10.1109/ETFA45728.2021.9613486.Search in Google Scholar

20. Kurilova-Palisaitiene, J. and E. Sundin. 2014. Challenges and Opportunities of Lean Remanufacturing. International Journal of Automation Technology 8(5): 644–652. ISSN: 1881-7629. DOI: 10.20965/ijat.2014.p0644.Search in Google Scholar

21. Mitschke, N. and M. Heizmann. 2020. Semantische Segmentierung von Ankerkomponenten von Elektromotoren. In: (T. Längle and M. Heizmann, eds) Forum Bildverarbeitung 2020. KIT Scientific Publishing, pp. 329–340. ISBN: 978-3-7315-1053-6.Search in Google Scholar

22. Moll, P., M. Schäfer, S. Coutandin and J. Fleischer. 2019. Reconfigurable modular production plant for thermoplastic hybrid composites. Production Engineering 13(3-4): 469–477. ISSN: 0944-6524. DOI: 10.1007/s11740-019-00898-z.Search in Google Scholar

23. Nwankpa, C., S. Eze, W. Ijomah, A. Gachagan and S. Marshall. 2021. Achieving remanufacturing inspection using deep learning. Journal of Remanufacturing 11(2): 89–105. ISSN: 2210-4690.10.1007/s13243-020-00093-9Search in Google Scholar

24. Obst, M., T. Holm, L. Urbas, A. Fay, S. Kreft, U. Hempen and T. Albers. 2015. Semantic description of process modules. In: International Conference on Emerging Technologies and Factory Automation (ETFA) 20. pp. 1–8. DOI: 10.1109/ETFA.2015.7301440.Search in Google Scholar

25. D. Parker, K. Riley, S. Robinson, H. Symington, J. Tewson, J. Jansson, S. Ramkumar and D. Peck. 2015. Remanufacturing Market Study. URL: https://www.remanufacturing.eu/assets/pdfs/remanufacturing-market-study.pdf.Search in Google Scholar

26. Schlüter, M., H. Lickert, K. Schweitzer, P. Bilge, C. Briese, F. Dietrich and J. Krüger. 2021. AI-enhanced Identification, Inspection and Sorting for Reverse Logistics in Remanufacturing. Procedia CIRP 98: 300–305. ISSN: 22128271.10.1016/j.procir.2021.01.107Search in Google Scholar

27. Schlüter, M., C. Niebuhr, J. Lehr and J. Krüger. 2018. Vision-based Identification Service for Remanufacturing Sorting. Procedia Manufacturing 21: 384–391. ISSN: 2351-9789.10.1016/j.promfg.2018.02.135Search in Google Scholar

28. Tang, Y., M. Zhou and R.J. Caudill. 2001. An integrated approach to disassembly planning and demanufacturing operation. IEEE Transactions on Robotics and Automation 17(6): 773–784. ISSN: 2374-958X. DOI: 10.1109/70.975899.Search in Google Scholar

29. Tolio, T., A. Bernard, M. Colledani, S. Kara, G. Seliger, J. Duflou, O. Battaia and S. Takata. 2017. Design, management and control of demanufacturing and remanufacturing systems. CIRP Annals 66(2): 585–609. ISSN: 00078506. DOI: 10.1016/j.cirp.2017.05.001.Search in Google Scholar

30. Ullerich, C. and U. Buscher. 2013. Flexible disassembly planning considering product conditions. International Journal of Production Research 51(20): 6209–6228. ISSN: 0020-7543. DOI: 10.1080/00207543.2013.825406.Search in Google Scholar

31. Ullrich, G. and T. Albrecht. 2019. Fahrerlose Transportsysteme. Springer Fachmedien Wiesbaden, Wiesbaden. ISBN: 978-3-658-27471-9. DOI: 10.1007/978-3-658-27472-6.Search in Google Scholar

32. Verband der Automobilindustrie e.V. Interface for the communication between automated guided vehicles (AGV) and a master control: VDA 5050.Search in Google Scholar

33. Vongbunyong, S. and W.H. Chen. 2015. Disassembly automation: Automated systems with cognitive abilities. Sustainable production, life cycle engineering and management. Springer, Cham. ISBN: 978-3-319-15182-3.10.1007/978-3-319-15183-0Search in Google Scholar

34. Wassilew, S., L. Urbas, J. Ladiges, A. Fay and T. Holm. 2016. Transformation of the NAMUR MTP to OPC UA to allow plug and produce for modular process automation. In: International Conference on Emerging Technologies and Factory Automation (ETFA) 21. pp. 1–9. DOI: 10.1109/ETFA.2016.7733749.Search in Google Scholar

35. Wurster, M., B. Häfner, D. Gauder, N. Stricker and G. Lanza. 2021. Fluid Automation – A Definition and an Application in Remanufacturing Production Systems. Procedia CIRP 97: 508–513. ISSN: 22128271. DOI: 10.1016/j.procir.2020.05.267.Search in Google Scholar

36. Wurster, M., M. Michel, M.C. May, A. Kuhnle, N. Stricker and G. Lanza. 2022. Modelling and condition-based control of a flexible and hybrid disassembly system with manual and autonomous workstations using reinforcement learning. Journal of Intelligent Manufacturing 33(2): 575–591. ISSN: 0956-5515. DOI: 10.1007/s10845-021-01863-3.Search in Google Scholar

Erhalten: 2021-10-31
Angenommen: 2022-04-25
Online erschienen: 2022-06-08
Erschienen im Druck: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.11.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2021-0157/html
Scroll to top button