Zusammenfassung
High-Gain-Beobachter werden häufig verwendet, um den aktuellen internen Zustand nichtlinearer Systeme zu schätzen. Der Ansatz beruht auf der Transformation in die Beobachtbarkeitsnormalform und mitunter auf der Einbettung des Systems in einen höherdimensionalen Raum. Obwohl dies Vorteile in Bezug auf Existenzbedingungen und Konvergenz bieten kann, sind die rechnerischen und implementierungsbezogenen Aufgaben oft abschreckend. In diesem Beitrag gehen wir einige dieser Herausforderungen an, indem wir neuronale Netze und automatisches Differenzieren verwenden, um die erforderlichen Funktionen für die Implementierung des Beobachters zu approximieren. Dies bietet einen pragmatischen Ansatz, um einige der mit der Einbettung von Beobachtern verbundenen Probleme zu umgehen.
Abstract
High gain observers are frequently utilized to estimate the current internal state of nonlinear systems. The approach relies on transforming the system into the observability canonical form and occasionally embedding it into a higher dimensional space. While this can offer advantages in terms of existence conditions and convergence, the computational and implementation tasks are often daunting. In this paper, we address some of these challenges by using neural networks and automatic differentiation to approximate the necessary functions for implementing the observer. This offers a pragmatic approach to bypassing some of the problems associated with embedding observers.
Über die Autoren

Dipl.-Ing. Julius Fiedler ist wissenschaftlicher Mitarbeiter am Institut für Regelungs- und Steuerungstheorie an der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden. Er beschäftigt sich mit formaler Repräsentation von Wissen, mit Fokus auf Anwendungen in der Regelungstechnik und maschinellem Lernen.

Dipl.-Ing. Daniel Gerbet ist wissenschaftlicher Mitarbeiter am Institut für Regelungs- und Steuerungstheorie an der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden. Er beschäftigt sich mit dem Reglerentwurf durch Methoden aus der algebraischen Geometrie und der Quantorenelimination.

Prof. Dr.-Ing. habil. Dipl.-Math. Klaus Röbenack ist Direktor des Instituts für Regelungs- und Steuerungstheorie an der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden. Seine Arbeitsgebiete umfassen den Entwurf nichtlinearer Regler und Beobachter sowie das wissenschaftliche Rechnen.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: Partly funded by Deutsche Forschungsgemeinschaft (DFG) – 417698841.
-
Data availability: The raw data can be obtained on request from the corresponding author.
Literatur
[1] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” Trans. ASME J. Basic Eng., vol. 83D, no. 1, pp. 95–108, 1961. https://doi.org/10.1115/1.3658902.Search in Google Scholar
[2] D. G. Luenberger, “Observers for multivariable systems,” IEEE Trans. Autom. Control, vol. AC-11, no. 2, pp. 190–197, 1966. https://doi.org/10.1109/tac.1966.1098323.Search in Google Scholar
[3] D. Bestle and M. Zeitz, “Canonical form observer design for non-linear time-variable systems,” Int. J. Control, vol. 38, no. 2, pp. 419–431, 1983. https://doi.org/10.1080/00207178308933084.Search in Google Scholar
[4] A. J. Krener and A. Isidori, “Linearization by output injection and nonlinear observers,” Syst. Control Lett., vol. 3, no. 1, pp. 47–52, 1983. https://doi.org/10.1016/0167-6911(83)90037-3.Search in Google Scholar
[5] F. E. Thau, “Observing the state of nonlinear dynamical systems,” Int. J. Control, vol. 17, no. 3, pp. 471–479, 1973. https://doi.org/10.1080/00207177308932395.Search in Google Scholar
[6] S. Raghavan and J. K. Hedrick, “Observer design for a class of nonlinear systems,” Int. J. Control, vol. 59, no. 2, pp. 515–528, 1994. https://doi.org/10.1080/00207179408923090.Search in Google Scholar
[7] R. Rajamani, “Observers for Lipschitz nonlinear systems,” IEEE Trans. Autom. Control, vol. 43, no. 3, pp. 397–401, 1998. https://doi.org/10.1109/9.661604.Search in Google Scholar
[8] K. Röbenack, “Improving high gain observer design for nonlinear systems using the structure of the linear part,” in Systems, Automation & Control, N. Derbel, Ed., Berlin, Boston, De Gruyter Oldenbourg, 2016, pp. 57–74.10.1515/9783110448436-005Search in Google Scholar
[9] G. Ciccarella, M. D. Mora, and A. Germani, “A luenberger-like observer for nonlinear systems,” Int. J. Control, vol. 57, no. 3, pp. 537–556, 1993. https://doi.org/10.1080/00207179308934406.Search in Google Scholar
[10] J. P. Gauthier, H. Hammouri, and S. Othman, “A simple observer for nonlinear systems — application to bioreactors,” IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 875–880, 1992. https://doi.org/10.1109/9.256352.Search in Google Scholar
[11] D. Astolfi and L. Marconi, “A high-gain nonlinear observer with limited gain power,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 3059–3064, 2015. https://doi.org/10.1109/tac.2015.2408554.Search in Google Scholar
[12] M. Farza, A. Ragoubi, S. H. Saïd, and M. M’Saad, “Improved high gain observer design for a class of disturbed nonlinear systems,” Nonlinear Dyn., vol. 106, no. 6, pp. 631–655, 2021. https://doi.org/10.1007/s11071-021-06876-4.Search in Google Scholar
[13] J. P. Gauthier, H. Hammouri, and I. Kupka, “Observers for nonlinear systems,” in Proc. IEEE Conf. on Decision and Control (CDC), Brighton, England, Dez, 1991, pp. 1483–1489.10.1109/CDC.1991.261648Search in Google Scholar
[14] T. Paradowski, B. Tibken, and R. Swiatlak, “An approach to determine observability of nonlinear systems using interval analysis,” in Proc. American Control Conference (ACC), Seattle, USA, Mai, 2017, pp. 3932–3937.10.23919/ACC.2017.7963557Search in Google Scholar
[15] K. Röbenack and R. Voßwinkel, “Formal verification of local and global observability of polynomial systems using quantifier elimination,” in International Conference on System Theory, Control and Computing (ICSTCC 2019), Sinaia, Romania, Okt, 2019, pp. 314–319.10.1109/ICSTCC.2019.8885899Search in Google Scholar
[16] B. Tibken, “Observability of nonlinear systems — an algebraic approach,” in Proc. IEEE Conf. on Decision and Control (CDC), vol. 5, Nassau, Bahamas, Dez, 2004, pp. 4824–4825.10.1109/CDC.2004.1429553Search in Google Scholar
[17] A. Vargas, J. Moreno, and M. Zeitz, “Order extension of nonlinear systems for observer design under reduced observability properties,” in 15th Triennial World Congress of the International Federation of Automatic Control Barcelona, July 21-26, 2002.Search in Google Scholar
[18] J. Levine and R. Marino, “Nonlinear system immersion, observers and finite-dimensional filters,” Syst. Control Lett., vol. 7, no. 2, pp. 133–142, 1986. https://doi.org/10.1016/0167-6911(86)90019-8.Search in Google Scholar
[19] A. Rapaport and A. Maloum, “Embedding for exponential observers of nonlinear systems,” in Proc. of the 39th IEEE Conference on Decision and Control (CDC), vol. 1, 2000, pp. 802–803.10.1109/CDC.2000.912867Search in Google Scholar
[20] K. Röbenack and D. Gerbet, “Toward state estimation by high gain differentiators with automatic differentiation,” Optim. Methods Softw., pp. 1–16, 2024, https://doi.org/10.1080/10556788.2024.2320737.Search in Google Scholar
[21] D. Gerbet and K. Röbenack, “Einbettungsbeobachter für polynomiale Systeme,” at – Automatisierungstechnik, vol. 71, no. 8, pp. 646–658, 2023. https://doi.org/10.1515/auto-2023-0065.Search in Google Scholar
[22] D. Gerbet and K. Röbenack, “A high-gain observer for embedded polynomial dynamical systems,” Machines, vol. 11, no. 2, p. 190, 2023. https://doi.org/10.3390/machines11020190.Search in Google Scholar
[23] L. Ecker and M. Schöberl, “Data-driven control and transfer learning using neural canonical control structures,” in Int. Conf. on Control, Decision and Information Technologies (CoDIT), IEEE, 2023, pp. 1856–1861.10.1109/CoDIT58514.2023.10284458Search in Google Scholar
[24] L. Ecker and M. Schöberl, “Indirect data-driven observer design using neural canonical observer structures,” IEEE Control Syst. Lett., vol. 7, pp. 1706–1711, 2023. https://doi.org/10.1109/lcsys.2023.3279789.Search in Google Scholar
[25] K. Röbenack, J. Fiedler, and D. Gerbet, “High gain embedding observer design: combining differential geometry and algebra with machine learning,” in 27th International Conference on System Theory, Control and Computing (ICSTCC), Timisoara, Romania, 2023, pp. 62–69.10.1109/ICSTCC59206.2023.10308515Search in Google Scholar
[26] J. M. Lee, Introduction to Smooth Manifolds, Bd. 218 d. Reihe Graduate Texts in Mathematics, New York, Springer, 2006.Search in Google Scholar
[27] R. Hermann and A. J. Krener, “Nonlinear controllability and observability,” IEEE Trans. Autom. Control, vol. 22, no. 5, pp. 728–740, 1977. https://doi.org/10.1109/tac.1977.1101601.Search in Google Scholar
[28] E. D. Sontag, “A concept of local observability,” Syst. Control Lett., vol. 5, no. 1, pp. 41–47, 1984. https://doi.org/10.1016/0167-6911(84)90007-0.Search in Google Scholar
[29] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas, Princeton, New Jersey, US, Princeton University Press, 2009.10.1515/9781400833344Search in Google Scholar
[30] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2. Aufl, Philadelphia, SIAM, 2008.10.1137/1.9780898717761Search in Google Scholar
[31] CppAD, “A package for differentiation of C++ algorithms,” 2023. Available at: http://www.coin-or.org/CppAD/.Search in Google Scholar
[32] C. Bendtsen and O. Stauning, TADIFF, a Flexible C++ Package for Automatic Differentiation, Technical Report IMM-REP-1997-07, Lungby, TU of Denmark, Dept. of Mathematical Modelling, 1997.Search in Google Scholar
[33] O. Stauning and C. Bendtsen, “FADBAD++: flexible Automatic differentiation using templates and operator overloading in ANSI C++,” 1996. Available at: http://www2.imm.dtu.dk/km/FADBAD/.Search in Google Scholar
[34] G. M. Hippel, “von: TaylUR, an arbitrary-order automatic differentiation package for Fortran 95,” Comput. Phys. Commun., vol. 174, no. 7, pp. 569–576, 2006.10.1016/j.cpc.2005.12.016Search in Google Scholar
[35] S. Stamatiadis, R. Prosmiti, and S. C. Farantos, “Auto__deriv: tool for automatic differentiation of a fortran code,” Comput. Phys. Commun., vol. 127, nos. 2&3, pp. 343–355, 2000. https://doi.org/10.1016/s0010-4655(99)00513-5.Search in Google Scholar
[36] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Autograd: effortless gradients in numpy,” in ICML 2015 AutoML Workshop, vol. 238, 2015, p. 5.Search in Google Scholar
[37] K. Röbenack, J. Winkler, and S. Wang, “LIEDRIVERS — a toolbox for the efficient computation of Lie derivatives based on the object-oriented algorithmic differentiation package ADOL-C,” in Proc. of the 4th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, Zurich, 2011, pp. 57–66.Search in Google Scholar
[38] C. M. Bishop, Pattern Recognition and Machine Learning. Information Science and Statistics, New York, Springer, 2006.Search in Google Scholar
[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016. Available at: http://www.deeplearningbook.org.Search in Google Scholar
[40] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for Machine Learning, Cambridge, UK, Cambridge University Press, 2020.10.1017/9781108679930Search in Google Scholar
[41] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv:1609.04747[cs], 2017. http://arxiv.org/abs/1609.04747,besucht:2023-05-04.Search in Google Scholar
[42] A. E. Motter, M. Gruiz, G. Károlyi, and T. Tél, “Doubly transient chaos: generic form of chaos in autonomous dissipative systems,” Phys. Rev. Lett., vol. 111, no. 19, 2013, Art. no. 194101. https://doi.org/10.1103/physrevlett.111.194101.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston