Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 28, 2023

Risk process with mixture of tempered stable inverse subordinators: Analysis and synthesis

  • Tetyana Kadankova ORCID logo EMAIL logo and Wing Chun Vincent Ng ORCID logo

Abstract

We propose two fractional risk models, where the classical risk process is time-changed by the mixture of tempered stable inverse subordinators. We characterize the risk processes by deriving the marginal distributions and establish the moments and covariance structure. We study the main characteristics of these models such as ruin probability and time to ruin and illustrate the results with Monte Carlo simulations. The data suggest that the ruin time can be approximated by the inverse gaussian distribution and its generalizations.


Communicated by Nikolai Leonenko


References

[1] G. Aletti, N. Leonenko and E. Merzbach, Fractional Poisson fields and martingales, J. Stat. Phys. 170 (2018), no. 4, 700–730. 10.1007/s10955-018-1951-ySearch in Google Scholar

[2] L. Beghin and E. Orsingher, Fractional Poisson processes and related planar random motions, Electron. J. Probab. 14 (2009), no. 61, 1790–1827. 10.1214/EJP.v14-675Search in Google Scholar

[3] L. Beghin and E. Orsingher, Poisson-type processes governed by fractional and higher-order recursive differential equations, Electron. J. Probab. 15 (2010), no. 22, 684–709. 10.1214/EJP.v15-762Search in Google Scholar

[4] R. Biard and B. Saussereau, Fractional Poisson process: Long-range dependence and applications in ruin theory, J. Appl. Probab. 51 (2014), no. 3, 727–740; correction, J. Appl. Prob. 53 (2016), no. 4, 1271–1272. 10.1239/jap/1409932670Search in Google Scholar

[5] D. O. Cahoy, V. V. Uchaikin and W. A. Woyczynski, Parameter estimation for fractional Poisson processes, J. Statist. Plann. Inference 140 (2010), no. 11, 3106–3120. 10.1016/j.jspi.2010.04.016Search in Google Scholar

[6] J. M. Chambers, C. L. Mallows and B. W. Stuck, A method for simulating stable random variables, J. Amer. Statist. Assoc. 71 (1976), no. 354, 340–344. 10.1080/01621459.1976.10480344Search in Google Scholar

[7] Y. Chen, Thinning algorithms for simulating point processes, Florida State University, Tallahassee, 2016. Search in Google Scholar

[8] C. D. Constantinescu, J. M. Ramirez and W. R. Zhu, An application of fractional differential equations to risk theory, Finance Stoch. 23 (2019), no. 4, 1001–1024. 10.1007/s00780-019-00400-8Search in Google Scholar

[9] C. D. Constantinescu, G. Samorodnitsky and W. Zhu, Ruin probabilities in classical risk models with gamma claims, Scand. Actuar. J. (2018), no. 7, 555–575. 10.1080/03461238.2017.1402817Search in Google Scholar

[10] P. Embrechts, A property of the generalized inverse Gaussian distribution with some applications, J. Appl. Probab. 20 (1983), no. 3, 537–544. 10.2307/3213890Search in Google Scholar

[11] R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag–Leffler Functions, Related Topics and Applications, Springer Monogr. Math., Springer, Heidelberg, 2014. 10.1007/978-3-662-43930-2Search in Google Scholar

[12] R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lect. 378, Springer, Vienna (1997), 223–276. 10.1007/978-3-7091-2664-6_5Search in Google Scholar

[13] E. Grushka, Characterization of exponentially modified Gaussian peaks in chromatography, Anal. Chem. 44 (1972), no. 11, 1733–1738. 10.1021/ac60319a011Search in Google Scholar PubMed

[14] N. Gupta, A. Kumar and N. Leonenko, Stochastic models with mixtures of tempered stable subordinators, Math. Commun. 26 (2021), no. 1, 77–99. Search in Google Scholar

[15] K. K. Kataria and M. Khandakar, Mixed fractional risk process, J. Math. Anal. Appl. 504 (2021), no. 1, Paper No. 125379. 10.1016/j.jmaa.2021.125379Search in Google Scholar

[16] K. K. Kataria and M. Khandakar, Generalized fractional counting process, J. Theoret. Probab. 35 (2022), no. 4, 2784–2805. 10.1007/s10959-022-01160-6Search in Google Scholar

[17] A. Kumar, N. Leonenko and A. Pichler, Fractional risk process in insurance, Math. Financ. Econ. 14 (2020), no. 1, 43–65. 10.1007/s11579-019-00244-ySearch in Google Scholar

[18] N. Leonenko, E. Scalas and M. Trinh, The fractional non-homogeneous Poisson process, Statist. Probab. Lett. 120 (2017), 147–156. 10.1016/j.spl.2016.09.024Search in Google Scholar

[19] N. Leonenko, E. Scalas and M. Trinh, Limit theorems for the fractional nonhomogeneous Poisson process, J. Appl. Probab. 56 (2019), no. 1, 246–264. 10.1017/jpr.2019.16Search in Google Scholar

[20] N. N. Leonenko, M. M. Meerschaert, R. L. Schilling and A. Sikorskii, Correlation structure of time-changed Lévy processes, Commun. Appl. Ind. Math. 6 (2014), no. 1, 483–506. 10.1685/journal.caim.483Search in Google Scholar

[21] A. Maheshwari and P. Vellaisamy, Fractional Poisson process time-changed by Lévy subordinator and its inverse, J. Theoret. Probab. 32 (2019), no. 3, 1278–1305. 10.1007/s10959-017-0797-6Search in Google Scholar

[22] F. Mainardi, R. Gorenflo and E. Scalas, A fractional generalization of the Poisson processes, Vietnam J. Math. 32 (2004), 53–64. Search in Google Scholar

[23] V. K. Malinovskii, Non-Poissonian claims’ arrivals and calculation of the probability of ruin, Insurance Math. Econom. 22 (1998), no. 2, 123–138. 10.1016/S0167-6687(98)80001-2Search in Google Scholar

[24] M. M. Meerschaert, E. Nane and P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab. 16 (2011), no. 59, 1600–1620. 10.1214/EJP.v16-920Search in Google Scholar

[25] V. Seshadri, The Inverse Gaussian Distribution: Statistical Theory and Applications, Lect. Notes Stat. 137, Springer, New York, 1999. 10.1007/978-1-4612-1456-4Search in Google Scholar

[26] M. Veillette and M. S. Taqqu, Numerical computation of first passage times of increasing Lévy processes, Methodol. Comput. Appl. Probab. 12 (2010), no. 4, 695–729. 10.1007/s11009-009-9158-ySearch in Google Scholar

[27] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995. Search in Google Scholar

Received: 2021-10-26
Accepted: 2022-09-04
Published Online: 2023-02-28
Published in Print: 2023-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.1.2025 from https://www.degruyter.com/document/doi/10.1515/rose-2022-2096/html
Scroll to top button