Published

2022-08-30

Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review

La altitud como determinante de la calidad del fruto con énfasis en el trópico andino de Colombia. Una revisión

DOI:

https://doi.org/10.15446/agron.colomb.v40n2.101854

Keywords:

UV radiation, temperature, fruit development, physical quality, chemical quality, physiological disorder (en)
radiación UV, temperatura, desarrollo del fruto, calidad física, calidad química, desorden fisiológico (es)

Downloads

Authors

Due to global warming, the highlands of the tropics have become more important for planting fruit trees. The climate at high altitudes is mainly characterized by decreased temperatures and increased solar radiation. A systematic literature review using four bibliographic databases revealed 22 studies that determined fruit quality at two altitudes. With increasing altitude, duration of fruit development was prolonged, and, in most cases, higher fresh weights and sizes were found; however, fruit firmness decreased. The intensity of the fruit color increased because of greater radiation in high areas. Mostly, the total soluble solids of the fleshy fruits augmented with altitude, probably because of an increase in photosynthesis with higher solar radiation. The total acidity did not show a clear trend with increasing elevations. At higher altitudes, the content of antioxidants (mainly phenolics) increased in the fruits, especially in the epidermis as a reaction to the increasing ultraviolet (UV) light. Physiological disorders in the fruits included sunburn and damage caused by low temperatures. Different species and varieties react differently to the conditions of highlands, depending on their origin and whether climatic conditions are optimal for a specific fruit tree. There are no positive effects on fruit quality when altitude is at the limit or above the recommended range for the fruit species.

Debido al calentamiento global, las zonas altas de los trópicos han ganado importancia para la siembra de los frutales. El clima en estas áreas se caracteriza principalmente por tener bajas temperaturas y mayor radiación solar. Mediante una revisión de literatura sistemática en cuatro bases de datos bibliográficas se encontraron 22 estudios que determinaron la calidad de los frutos evaluada en mínimo dos altitudes. A mayor altitud el desarrollo del fruto se prolongó y en la mayoría de los casos, se encontró un mayor peso fresco y tamaño, sin embargo, la firmeza del fruto disminuyó. La intensidad del color del fruto aumentó debido a la mayor radiación en zonas altas. En la mayoría de los casos, los sólidos solubles totales de frutos jugosos se incrementaron con la altitud, probablemente, por el aumento de la fotosíntesis debido a la mayor radiación solar, mientras que la acidez total no mostró una tendencia clara con el incremento de la elevación. Con la altitud ascendente aumentó el contenido de los antioxidantes (principalmente compuestos fenólicos) en los frutos y, especialmente, en su epidermis, como reacción al aumento de luz ultravioleta (UV). Dentro de los desórdenes fisiológicos en los frutos se destacan los golpes de sol y los daños por bajas temperaturas. Las especies y variedades reaccionan de forma diferente a las condiciones de las zonas altas, dependiendo de su origen, y si las condiciones climáticas están dentro de las óptimas para este frutal. No se detectan efectos positivos sobre la calidad del fruto cuando la altitud está en el límite o por encima del rango recomendado para la especie frutal.

References

Al-Kalbani, B. S., Al-Yahyai, R. A., Al-Sadi, A. M., & Al-Mamari, A-G. H. (2021). Physical and chemical fruit quality attributes of two pomegranate cultivars grown at varying altitudes of Al-Hajar Mountains in Oman. Journal of Agricultural and Marine Sciences, 26(2), 42–50. https://doi.org/10.53541/jams.vol26iss2pp42-50

Ayer, D. B., & Shrestha, G. K. (2018). Altitudinal effects on fruit quality parameters of sweet orange (Citrus sinensis Osbeck). Nepalese Journal of Agricultural Sciences, 16, 25–29.

Azari, R., Tadmor, Y., Meir, A., Reuveni, M., Evenor, D., Nahon, S., Shlomo, H., Chen, L., & Levin, I. (2010). Light signaling genes and their manipulation towards modulation of phytonutrient content in tomato fruits. Biotechnology Advances, 28(1), 108–118. https://doi.org/10.1016/j.biotechadv.2009.10.003

Balaguera-López, H. E., Fischer, G., & Herrera-Arévalo, A. (2022). Postharvest physicochemical aspects of Campomanesia lineatifolia R. & P. fruit, a Myrtaceae with commercial potential. Revista Colombiana de Ciencias Hortícolas, 16(2), Article e14185. https://doi.org/10.17584/rcch.2022v16i2.14185

Batista-Silva, W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M., Zsögön, A., & Araújo, W. L. (2018). Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Frontiers in Plant Science, 9, Article 1689. https://doi.org/10.3389/fpls.2018.01689

Benavides, H. O., Simbaqueva, O., & Zapata, H. J. (2017). Atlas de radiación solar, ultravioleta y ozono de Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) y Unidad de Planeación Minero Energética (UPME). https://www.andi.com.co//Uploads/RADIACION.compressed.pdf

Bonnet, J. G., & Cárdenas, J. F. (2012). Tomate de árbol (Cyphomandra betacea Sendt.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 825–850). Produmedios.

Brenes-Gamboa, S. (2017). Parámetros de producción y calidad de los cultivares de banano FHIA-17, FHIA-25 y Yangambi. Agronomía Mesoamericana, 28(3), 719–733. https://doi.org/10.15517/ma.v28i3.21902

Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry and molecular biology of plants (2nd ed.). John Wiley & Sons.

Bugaud, C., Chillet, M., Beauté, M. P., & Dubois, C. (2006). Physicochemical analysis of mountain bananas from the French West Indies. Scientia Horticulturae, 108(2), 167–172. https://doi.org/10.1016/j.scienta.2006.01.024

Caldwell, M. M., Bjorn, L. O., Bornman, J. F., Flint, S. D., Kulandaivelu, G., Teramura, A. H., & Tevini, M. (1998). Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 40–52. https://doi.org/10.1016/S1011-1344(98)00184-5

Caldwell, M. M., Robberecht, R., & Billings, W. D. (1980). A steep latitudinal gradient of solar ultraviolet-B radiation in the Arctic-Alpine life zone. Ecology, 61(3), 600–611. https://doi.org/10.2307/1937426

Campos, T., & Quintero, O. C. (2012). Curuba (Passiflora tripartita var. mollissima). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 421–442). Produmedios.

Carillo-Perdomo, E., Aller, A., Cruz-Quintana, S. M., Giampieri, F., & Alvarez-Suarez, J. M. (2015). Andean berries from Ecuador: A review on botany, agronomy, chemistry and health potential. Journal of Berry Research, 5(2), 49–69. https://doi.org/10.3233/JBR-140093

Carvalho, C. P., Bernal, J. E., Velásquez, M. A., & Cartagena, J. R. V. (2015). Fatty acid content of avocados (Persea americana Mill. cv. Hass) in relation to orchard altitude and fruit maturity stage. Agronomía Colombiana, 33(2), 220–227. https://doi.org/10.15446/agron.colomb.v33n2.49902

Casierra-Posada, F. (2007). Fotoinhibición: Respuesta fisiológica de los vegetales al estrés por exceso de luz. Revista Colombiana de Ciencias Hortícolas, 1(1), 114–123. https://doi.org/10.17584/rcch.2007v1i1.1150

Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009

Cleves Leguízamo, J. A. (2021). Fundamentos técnicos del cultivo del arándano (Vaccinium corymbosum L.) en la región central de Colombia (1st ed.). Editorial de la Universidad Pedagógica y Tecnológica de Colombia-UPTC

Corredor, D. (2012). Pitahaya amarilla (Hylocereus megalanthus [K. Schum. ex Vaupel] Ralf Bauer). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 802–824). Produmedios.

Correia, S., Gonçalves, B., Aires, A., Silva, A., Ferreira, L, Carvalho, R., Fernandes, H., Freitas, C., Carnide, V., & Silva, A. P. (2016). Effect of harvest year and altitude on nutritional and biometric characteristics of blueberry cultivars. Journal of Chemistry, 2016, Article 8648609. https://doi.org/10.1155/2016/8648609

Das, H. P (Ed.). (2012). Agrometeorology in extreme events and natural disasters. CRC Press inc.

Duarte, O., & Paull, R. E (Eds.). (2015). Exotic fruits and nuts of the new world. CABI Publishing. https://doi. org/10.1079/9781780645056.0000

Famiani, F., Battistelli, A., Moscatello, S., Cruz-Castillo, J. G., & Walker, R. P. (2015). The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents – a review. Revista Chapingo, Serie Horticultura, 21(2), 97–128. https://doi.org/10.5154/r.rchsh.2015.01.004

Faniadis, D., Drogoudi, P. D., & Vasilakakisa, M. (2010). Effects of cultivar, orchard elevation, and storage on fruit quality characters of sweet cherry (Prunus avium L.). Scientia Horticulturae, 125(3), 301–304. https://doi.org/10.1016/j.scienta.2010.04.013

Fernández, G. E., Melgarejo, L. M., & Rodríguez, N. A. (2014). Algunos aspectos de la fotosíntesis y potenciales hídricos de la granadilla (Passiflora ligularis Juss.) en estado reproductivo en el Huila, Colombia. Revista Colombiana de Ciencias Hortícolas, 8(2), 206–216. https://doi.org/10.17584/rcch.2014v8i2.3214

Fischer, G. (2000). Ecophysiological aspects of fruit growing in tropical highlands. Acta Horticulturae, 531, 91–98. https://doi.org/10.17660/ActaHortic.2000.531.13

Fischer, G., Almanza-Merchán, P. J., & Piedrahíta, W. (2012). Brevo (Ficus carica L.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 943–952.). Produmedios.

Fischer, G., Almanza-Merchán, P. J., & Ramírez, F. (2012a). Source-sink relationships in fruit species: A review. Revista Colombiana de Ciencias Hortícolas, 6(2), 238–253. https://doi.org/10.17584/rcch.2012v6i2.1980

Fischer, G., Balaguera-López, H. E., & Álvarez-Herrera, J. (2021). Causes of fruit cracking in the era of climate change. A review. Agronomía Colombiana, 39(2), 196–207. https://doi.org/10.15446/agron.colomb.v39n2.97071

Fischer, G., Balaguera-López, H. E., & Magnitskiy, S. (2021). Review on the ecophysiology of important Andean fruits: Solanaceae. Revista U.D.C.A Actualidad & Divulgación Científica, 24(1), Article e1701. http://doi.org/10.31910/rudca.v24.n1.2021.1701

Fischer, G., Cleves-Leguizamo, J. A., & Balaguera-López, H. E. (2022). Impact of soil temperature on fruit species within climate change scenarios. Revista Colombiana de Ciencias Hortícolas, 16(1), Article e12769. https://doi.org/10.17584/rcch.2022v16i1.12769

Fischer, G., Ebert, G., & Lüdders, P. (2007). Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. Journal of Applied Botany and Food Quality, 81(1), 29–35.

Fischer, G., Ebert, G., & Lüdders, P. (2000). Provitamin A carotenoids, organic acids and ascorbic acid content of cape gooseberry (Physalis peruviana L.) ecotypes grown at two tropical altitudes. Acta Horticulturae, 531, 263–267. https://doi.org/10.17660/ActaHortic.2000.531.43

Fischer, G., & Melgarejo, L. M. (2014). Ecofisiología de la uchuva (Physalis peruviana L.). In C. P. Carvalho, & D. A. Moreno (Eds.), Physalis peruviana: Fruta andina para el mundo (pp. 31–47). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo – CYTED.

Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas, 14(1), 76–89. https://doi.org/10.17584/rcch.2020v14i1.10893

Fischer, G., & Melgarejo, L. M. (2021). Ecophysiological aspects of guava (Psidium guajava L.). A review. Revista Colombiana de Ciencias Hortícolas, 15(2), Article e12355. https://doi.org/10.17584/rcch.2021v15i2.12355

Fischer, G., Melgarejo, L. M., & Cutler, J. (2018). Pre-harvest factors that influence the quality of passion fruit: A review. Agronomía Colombiana, 36(3), 217–226. https://doi.org/10.15446/agron.colomb.v36n3.71751

Fischer, G., & Miranda, D. (2021). Review on the ecophysiology of important Andean fruits: Passiflora L. Revista Facultad Nacional de Agronomía Medellín, 74(2), 9471–9481. https://doi.org/10.15446/rfnam.v74n2.91828

Fischer, G., & Orduz-Rodríguez, J. O. (2012). Ecofisiología en frutales. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 54–72). Produmedios.

Fischer, G., & Parra-Coronado, A. (2020). Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret): A review. Agronomía Colombiana 38(3), 388–397. https://doi.org/10.15446/agron.colomb.v38n3.88982

Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2020). Aspectos del cultivo y de la fisiología de feijoa (Acca sellowiana [Berg] Burret). Una revisión. Ciencia y Agricultura, 17(3), 11–24. https://doi.org/10.19053/01228420.v17.n3.2020.11386

Fischer, G., Ramírez, F., & Almanza-Merchán, P. J. (2012b). Inducción floral, floración y desarrollo del fruto. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 120–140). Produmedios.

Fischer, G., Ramirez, F., & Casierra-Posada, F. (2016). Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomía Colombiana, 34(2), 190–199. https://doi.org/10.15446/agron.colomb.v34n2.56799

Freihat, N. M., Al-Shannag, A. K., & El Assi, N. (2008). Qualitative responses of ‘Nabali’ olive oil to harvesting time and altitudes at sub-humid Mediterranean. International Journal of Food Properties, 11(3), 561–570. https://doi.org/10.1080/10942910701567356

García-Muñoz, M. C., Henao-Rojas, J. C., Moreno-Rodríguez, J. M., Botina-Azain, B. L., & Romero-Barrera, Y. (2021). Effect of rootstock and environmental factors on fruit quality of Persian lime (Citrus latifolia Tanaka) grown in tropical regions. Journal of Food Composition and Analysis, 103, Article 104081. https://doi.org/10.1016/j.jfca.2021.104081

Gariglio, N. F., Pilatti, R. A., & Agustí, M. (2007). Requerimientos ecofisiológicos de los árboles frutales. In G. O. Sozzi (Ed.), Árboles frutales: ecofisiología, cultivo y aprovechamiento (pp. 41–82). Facultad de Agronomía, Universidad de Buenos Aires.

Gutiérrez-Villamil, D. A., Alvarez-Herrera, J. G., & Fischer, G. (2022). Performance of the ‘Anna’ apple (Malus domestica Borkh.) in tropical highlands: A review. Revista de Ciencias Agrícolas, 39(1). https://revistas.udenar.edu.co/index.php/rfacia/article/view/6561

Henao-Rojas, J. C., Lopez, J. H., Osorio, N. W., & Ramirez--Gil, J. G. (2019). Fruit quality in Hass avocado and its relationships with different growing areas under tropical zones. Revista Ceres, 66(5), 341–350. https://doi.org/10.1590/0034-737X201966050003

Hideg, E., Jansen, M. A. K., & Strid, A. (2013). UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends in Plant Science, 18(2), 107–115. https://doi.org/10.1016/j.tplants.2012.09.003

Ikram, S., Shafqat, W., Qureshi, M. A., Din, S. U., Rehman, S. U., Mehmood, A., Sajjad, Y., & Nafees, M. (2020). Causes and control of fruit cracking in pomegranate: A review. Journal of Global Innovations in Agricultural and Social Sciences, 8(4), 183–190. https://doi.org/10.22194/JGIASS/8.920

Inglese, P., Costanza, P., Gugliuzza, G., Inglese, G., & Liguori, G. (2010). Influence of within-tree and environmental factors on fruit quality of cactus pear (Opuntia ficus-indica) in Italy. Fruits, 65(3), 179–189. https://doi.org/10.1051/fruits/2010012

Karagiannis, E., Tanou, G., Samiotaki, M., Michailidis, M., Diamantidis, G., Minas, I. S., & Molassiotis, A. (2016). Comparative physiological and proteomic analysis reveal distinct regulation of peach skin quality traits by altitude. Frontiers in Plant Science, 7, Article 1689. https://doi.org/10.3389/fpls.2016.01689

Kumar, P., Sethi, S., Sharma, R. R., Singh, S., Saha, S., Sharma, V. K., Sharma, S. K., & Varghese, E. (2019). Influence of altitudinal variation on the physical and biochemical characteristics of apple (Malus domestica). Indian Journal of Agricultural Sciences, 89(1), 145–152.

Ladaniya, M. S. (2008). Preharvest factors affecting fruit quality and postharvest life. In M. S. Ladaniya (Ed.), Citrus fruit, biology, technology and evaluation (pp. 79–102). Elsevier.

Madani, B., Mirshekari, A., & Imahori Y. (2019). Physiological responses to stress. In E. Yahía, & A. Carrillo-López (Eds.), Postharvest physiology and biochemistry of fruits and vegetables (pp. 405–423). Elsevier. https://doi.org/10.1016/B978-0-12-813278-4.00020-8

Makeredza, B., Jooste, M., Lötze, E., Schmeisser, M., & Steyn, W. J. (2018). Canopy factors influencing sunburn and fruit quality of Japanese plum (Prunus salicina Lindl.). Acta Horticulturae, 1228, 121–128. https://doi.org/10.17660/ActaHortic.2018.1228.18

Maro, L. A. C., Pio, R., Guedes, M. N. S., Abreu, C. M. P., & Moura, P. H. A. (2014). Environmental and genetic variation in the post-harvest quality of raspberries in subtropical areas in Brazil. Acta Scientiarum, Agronomy, 36(3), 323–328. https://doi.org/10.4025/actasciagron.v36i3.18050

Mayorga, M., Fischer, G., Melgarejo, L. M., & Parra-Coronado, A. (2020). Growth, development and quality of Passiflora tripartita var. mollissima fruits under two environmental tropical conditions. Journal of Applied Botany and Food Quality, 93, 66–75. https://doi.org/10.5073/JABFQ.2020.093.009

Medina, C. I., Lobo, M., Castaño, A. A., & Cardona, L. E. (2015). Análisis del desarrollo de plantas de mortiño (Vaccinium meridionale Swart.) bajo dos sistemas de propagación: clonal y sexual. Corpoica Ciencia y Tecnología Agropecuaria, 16(1), 65–77.

Mendoza, I., Peres, C. A., & Morellato, L. P. C. (2017). Continental- scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. Global Planetary Change, 148, 227–241. https://doi.org/10.1016/j.gloplacha.2016.12.001

Mengist, W., Soromessa, T., & Legese, G. (2020). Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Science of the Total Environment, 702, Article 134581. https://doi.org/10.1016/j.scitotenv.2019.134581

Miranda, D. (2020). Granadilla: Passiflora ligularis Juss. In A. R. Carlosama, F. G. Faleiro, M. P. Morera, & A. M. Costa (Eds.), Pasifloras - especies cultivadas en el mundo (pp. 65-103). ProImpress.

Moretti, C. L., Mattos, L. M., Calbo, A. G., & Sargent, S. A. (2010). Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, 43(7), 1824–1832. https://doi.org/10.1016/j.foodres.2009.10.013

Musacchi, S., & Serra, S. (2018). Apple fruit quality: Overview on pre-harvest factors. Scientia Horticulturae, 234, 409–430. https://doi.org/10.1016/j.scienta.2017.12.057

Musyarofah, N., Susanto S., Aziz S. A., Suket, K., & Dadang (2020). The diversity of ‘kristal’ guava (Psidium guajava) fruit quality in response to different altitudes and cultural practices. Biodiversitas, 21(7), 3310–3316. https://doi.org/10.13057/biodiv/d210755

Naryal, A., Dolkar, D., Bhardwaj, A. K., Kant, A., Chaurasia, O. P., & Stobdan, T. (2020). Effect of altitude on the phenology and fruit quality attributes of apricot (Prunus armeniaca L.) fruits. Defence Life Science, 5(1), 18–24. https://doi.org/10.14429/dlsj.5.14656

Ocampo, J. P., Rodríguez, A., & Parra, M. M. (2020). Gulupa: Passiflora edulis f. edulis Sims. In A. R. Carlosama, F. G. Faleiro, M. P. Morera, & A. M. Costa (Eds.), Pasifloras - especies cultivadas en el mundo (pp. 139–157). ProImpress, Cepass.

Oliveira, J. B., Egipto, R., Laureano, O., Castro, R., Pereira, G. E., & Ricardo-da-Silva, J. M. (2019). Climate effects on physicochemical composition of Syrah grapes at low and high altitude sites from tropical grown regions of Brazil. Food Research International, 121, 870–879. https://doi.org/10.1016/j.foodres.2019.01.011

Ouzounis, T., Parjikolaei, B. R., Fretté, X., Rosenqvist, E., & Ottosen, C. O. (2015). Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Frontiers in Plant Science, 6, Article 19. https://doi.org/10.3389/fpls.2015.00019

Osterloh, A., Ebert, G., Held, W.-H., Schulz, H., & Urban, E. (1996). Lagerung von Obst und Südfrüchten. Ulmer.

Page, M. J., McKenzie, J, E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., ... , & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. British Medical Journal, 372(71). https://doi.org/10.1136/bmj.n71

Papanov, S. I., Petkova, E. G., & Ivanov, I. G. (2021). Polyphenols content and antioxidant activity of bilberry juice obtained from different altitude samples. Journal of Pharmaceutical Research International, 33(29A), 218–223. https://doi.org/10.9734/JPRI/2021/v33i29A31581

Parra-Coronado, A., Fischer, G., Balaguera-López, H. E., & Melgarejo, L. M. (2022). Sugar and organic acids content in feijoa (Acca sellowiana [O. Berg] Burret) fruits, grown at two altitudes. Revista de Ciencias Agrícolas, 39(1), 55–69. https://doi.org/10.22267/rcia.223901.173

Parra-Coronado, A., Fischer, G., & Camacho-Tamayo, J. H. (2015). Development and quality of pineapple guava fruit in two locations with different altitudes in Cundinamarca, Colombia. Bragantia, 74(3), 359–366. https://doi.org/10.1590/1678-4499.0459

Parra-Coronado, A., Fischer, G., & Camacho-Tamayo, J. H. (2016). Growth model of the pineapple guava (Acca sellowiana (O. Berg) Burret), as a function of thermal time and tropical altitude. Ingeniería e Investigación, 36(3), 6–14. https://doi.org/10.15446/ing.investig.v36n3.52336

Parra-Coronado, A., Fischer, G., & Camacho-Tamayo, J. H. (2017a). Model of pre-harvest quality of pineapple guava fruits (Acca sellowiana (O. Berg) Burret) as a function of weather conditions of the crops. Bragantia, 76(1), 177–186. https://doi.org/10.1590/1678-4499.652

Parra-Coronado, A., Fischer, G., & Camacho-Tamayo, J. H. (2017b). Post-harvest quality model of pineapple guava fruit according to storage and weather conditions of cultivation. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(9), 634–639. https://doi.org/10.1590/1807-1929/agriambi.v21n9p634-639

Parra-Coronado, A., Fischer, G., & Camacho-Tamayo, J. H. (2018). Post-harvest quality of pineapple guava [Acca sellowiana (O. Berg) Burret] fruits produced in two locations of Cundinamarca, Colombia, at different altitudes. Agronomía Colombiana, 36(1), 68–78. https://doi.org/10.15446/agron.colomb.v36n1.68577

Parra-Coronado, A., Fischer, G., & Camacho-Tamayo, J. H. (2019). Influencia de las condiciones climáticas de cultivo en la calidad en cosecha y en el comportamiento postcosecha de frutos de Feijoa. Tecnología en Marcha, 32, 86–92. https://doi.org/10.18845/tm.v32i7.4264

Parra-Coronado, A., Fischer, G., & Chaves-Cordoba, B. (2015). Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biológica Colombiana, 20(1), 167–177. https://doi.org/10.15446/abc.v20n1.43390

Paull, R. E., & Duarte, O. (2011). Tropical fruits (2nd ed.). CAB International.

Pérez de Camacaro, M., Ojeda, M., Giménez, A., González, M., & Hernández, A. (2017). Atributos de calidad en frutos de fresa ‘Capitola’ cosechados en diferentes condiciones climáticas en Venezuela. Bioagro, 29(3), 163–174.

Pérez, L. V. , & Melgarejo, L. M. (2015). Photosynthetic performance and leaf water potential of gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the Colombian Andes. Acta Biológica Colombiana, 20(1), 183–194. https://doi.org/10.15446/abc.v20n1.42196

Ramírez, F., Kallarackal, J., & Davenport, T. L. (2018). Lulo (Solanum quitoense Lam.) reproductive physiology: A review. Scientia Horticulturae, 238, 163–176. https://doi.org/10.1016/j.scienta.2018.04.046

Ramírez-Gil, J. G., Morales, J. G., & Peterson, A. T. (2018). Potential geography and productivity of “Hass” avocado crops in Colombia estimated by ecological niche modeling. Scientia Horticulturae, 237, 287–295. https://doi.org/10.1016/j.scienta.2018.04.021

Ruiz-Sola, M. A., & Rodríguez-Concepción, M. (2012) Carotenoid biosynthesis in Arabidopsis: A colorful pathway. The Arabidopsis book, 10, Article e0158. https://doi.org/10.1199/tab.0158

Rundel, P. W., Smith, A. P., & Meinzer, F. C (Eds.). (1994). Tropical Alpine environments. Plant form and function. Cambridge University Press. https://doi.org/10.1017/CBO9780511551475

Sahu, N., Saini, A., Behera, S. K., Sayama, T., Sahu, L., Nguyen, V.- T.-V., & Takara, K. (2020). Why apple orchards are shifting to the higher altitudes of the Himalayas? PLoS ONE, 15(7), Article e0235041. https://doi.org/10.1371/journal.pone.0235041

Salazar-García, S., Medina-Carrillo, R. E., & Álvarez-Bravo, A. (2016). Influencia del riego y radiación solar sobre el contenido de fitoquímicos en la piel de frutos de aguacate ‘Hass’. Revista Mexicana de Ciencias Agrícolas, 7(13), 2565–2575.

Posnette, A. F. (1980). Tropical fruits. In J. A. Samson (Ed.), Experimental agriculture, Cambridge University Press.

Sánchez-Reinoso, A. D., Jiménez-Pulido, Y., Martínez-Pérez, J. P., Pinilla, C. S., & Fischer, G. (2019). Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Revista Colombiana de Ciencias Hortícolas, 13(3), 325–335. https://doi.org/10.17584/rcch.2019v13i3.10017

Sherman, W. B., & Beckman, T. G. (2003). Climatic adaptation in fruit crops. Acta Horticulturae, 622, 411–428. https://doi.org/10.17660/ActaHortic.2003.622.43

Shukla, P. R., Skea, J., Slade, R., van Diemen, R., Haughey, E., Malley, J., Pathak M., & Portugal Pereira, J (Eds.). (2019). Technical summary 2019. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC. https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/03_Technical-Summary-TS.pdf

Solarte, M. E., Melgarejo, L. M., Martínez, O., Hernández, M. S., & Fernández-Trujillo, J. P. (2014). Fruit quality during ripening of Colombian guava (Psidium guajava L.) grown at different altitudes. Journal of Food, Agriculture & Environment, 12(2), 669–675.

Susanto, S., Abdila, A., & Sulistyaningrum, D. (2013). Growth and postharvest quality of mandarin (Citrus reticulate ‘Fremont’) fruit harvested from different altitudes. Acta Horticulturae, 975, 421–426. https://doi.org/10.17660/ActaHortic.2013.975.54

Tito, R., Vasconcelos, H. L., & Feeley, K. J. (2018). Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Global Change Biology, 24(2), 592–602. https://doi.org/10.1111/gcb.13959

Tombesi, S., Cincera, I., Frioni, T., Ughini, V., Gatti, M., Palliotti, A., & Poni, S. (2019). Relationship among night temperature, carbohydrate translocation and inhibition of grapevine leaf photosynthesis. Environmental and Experimental Botany, 157, 293–298. https://doi.org/10.1016/j.envexpbot.2018.10.023

Van Leeuwen, C., & Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11(1), 150–167. https://doi.org/10.1017/jwe.2015.21

Vergara, M. F., Vargas, J., & Acuña, J. F. (2016). Physicochemical characteristics of blackberry (Rubus glaucus Benth.) fruits from four production zones of Cundinamarca, Colombia. Agronomía Colombiana, 34(3), 336–345. https://doi.org/10.15446/agron.colomb.v34n3.62755

Viera, W., Shinohara, T., Samaniego, I., Sanada, A., Terada, N., Ron, L., Suárez-Tapia, A., & Koshio, K. (2022). Phytochemical composition and antioxidant activity of Passiflora spp. germplasm grown in Ecuador. Plants, 11(3), Article 328. https://doi.org/10.3390/plants11030328

Viera, W., Noboa, M., Martínez, A., Báez, F., Jácome, R., Medina, L., & Jackson, T. (2019). Trichoderma asperellum increases crop yield and fruit weight of blackberry (Rubus glaucus) under subtropical Andean conditions. Vegetos, 32, 209–215. https://doi.org/10.1007/s42535-019-00024-5

Voronkov, A. S., Ivanova, T. V., Kuznetsova, E. I., & Kumachova, T. Kh. (2019). Adaptations of Malus domestica Borkh. (Rosaceae) fruits grown at different altitudes. Russian Journal of Plant Physiology, 66(6), 922–931. https://doi.org/10.1134/S1021443719060153

Yahia, E. M., & Carrillo-López, A (Eds.). (2019). Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing. https://doi.org/10.1016/C2016-0-04653-3

Yohannes, H. (2016). A review on relationship between climate change and agriculture. Journal of Earth Science and Climatic Change, 7(2), Article 335. https://doi.org/10.4172/2157-7617.1000335

Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26(6), 588–599. https://doi.org/10.1016/j.tplants.2021.02.011

Zeng, Q., Dong, G., Tian, L., Wu, H., Ren, Y., Tamir, G., Huang, W., & Yu, H. (2020). High altitude is beneficial for antioxidant components and sweetness accumulation of rabbiteye blueberry. Frontiers in Plant Science, 11, Article 573531. https://doi.org/10.3389/fpls.2020.573531

Zenginbal, H., & Ozcan, M. (2018). Effect of altitude on growth-development and fruit quality attributes of kiwifruit (Actinidia deliciosa Planch) cultivation. Pakistan Journal of Agricultural Sciences, 55(4), 843–851.

How to Cite

APA

Fischer, G., Parra-Coronado, A. and Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana, 40(2), 212–227. https://doi.org/10.15446/agron.colomb.v40n2.101854

ACM

[1]
Fischer, G., Parra-Coronado, A. and Balaguera-López, H.E. 2022. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana. 40, 2 (May 2022), 212–227. DOI:https://doi.org/10.15446/agron.colomb.v40n2.101854.

ACS

(1)
Fischer, G.; Parra-Coronado, A.; Balaguera-López, H. E. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 2022, 40, 212-227.

ABNT

FISCHER, G.; PARRA-CORONADO, A.; BALAGUERA-LÓPEZ, H. E. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana, [S. l.], v. 40, n. 2, p. 212–227, 2022. DOI: 10.15446/agron.colomb.v40n2.101854. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/101854. Acesso em: 12 oct. 2024.

Chicago

Fischer, Gerhard, Alfonso Parra-Coronado, and Helber Enrique Balaguera-López. 2022. “Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review”. Agronomía Colombiana 40 (2):212-27. https://doi.org/10.15446/agron.colomb.v40n2.101854.

Harvard

Fischer, G., Parra-Coronado, A. and Balaguera-López, H. E. (2022) “Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review”, Agronomía Colombiana, 40(2), pp. 212–227. doi: 10.15446/agron.colomb.v40n2.101854.

IEEE

[1]
G. Fischer, A. Parra-Coronado, and H. E. Balaguera-López, “Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review”, Agron. Colomb., vol. 40, no. 2, pp. 212–227, May 2022.

MLA

Fischer, G., A. Parra-Coronado, and H. E. Balaguera-López. “Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review”. Agronomía Colombiana, vol. 40, no. 2, May 2022, pp. 212-27, doi:10.15446/agron.colomb.v40n2.101854.

Turabian

Fischer, Gerhard, Alfonso Parra-Coronado, and Helber Enrique Balaguera-López. “Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review”. Agronomía Colombiana 40, no. 2 (May 1, 2022): 212–227. Accessed October 12, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/101854.

Vancouver

1.
Fischer G, Parra-Coronado A, Balaguera-López HE. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. [Internet]. 2022 May 1 [cited 2024 Oct. 12];40(2):212-27. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/101854

Download Citation

CrossRef Cited-by

CrossRef citations31

1. Elberth Hernando Pinzón-Sandoval, Helber Enrique Balaguera-López, Pedro José Almanza-Merchán. (2023). Evaluation of SPAD Index for Estimating Nitrogen and Magnesium Contents in Three Blueberry Varieties (Vaccinium corymbosum L.) on the Andean Tropics. Horticulturae, 9(2), p.269. https://doi.org/10.3390/horticulturae9020269.

2. Juan Sebastián Arias-García, Sebastián Ruden, Valentina Cruz, Alejandro Hurtado-Salazar, Nelson Ceballos-Aguirre. (2023). Quality, fruit retention and ecophysiology of 'Hass' avocado grown at two altitudes in the Andean tropics of Colombia. Revista Colombiana de Ciencias Hortícolas, 17(2) https://doi.org/10.17584/rcch.2023v17i2.15861.

3. Sidonia Martínez, Carlota Fuentes, Javier Carballo. (2022). Antioxidant Activity, Total Phenolic Content and Total Flavonoid Content in Sweet Chestnut (Castanea sativa Mill.) Cultivars Grown in Northwest Spain under Different Environmental Conditions. Foods, 11(21), p.3519. https://doi.org/10.3390/foods11213519.

4. José Alejandro Cleves-Leguízamo. (2024). Productividad y calidad de la fruta en huertos de maracuyá con diferentes sistemas de tutorado y densidad en el trópico bajo colombiano. Revista Colombiana de Ciencias Hortícolas, 18(1) https://doi.org/10.17584/rcch.2024v18i1.16575.

5. Stanislav Magnitskiy. (2023). Native plants from the genus Vaccinium in Colombia and their potential uses. A review. Revista Colombiana de Ciencias Hortícolas, 17(1) https://doi.org/10.17584/rcch.2023v17i1.15503.

6. Pedro Alexander Velasquez-Vasconez, Danita Andrade Díaz. (2024). LeafArea Package: A Tool for Estimating Leaf Area in Andean Fruit Species. International Journal of Plant Biology, 15(1), p.102. https://doi.org/10.3390/ijpb15010009.

7. Zhibing Zhao, Lang Wang, Jiajia Chen, Ni Zhang, Wei Zhou, Yuehua Song. (2024). Altitudinal variation of dragon fruit metabolite profiles as revealed by UPLC-MS/MS-based widely targeted metabolomics analysis. BMC Plant Biology, 24(1) https://doi.org/10.1186/s12870-024-05011-w.

8. Mayerlin Orjuela-Angulo, Alfonso Parra-Coronado, Jesús Hernán Camacho-Tamayo. (2022). Base temperature for a phenological stage in plum cultivar Horvin (Prunus salicina Lindl.). Revista Colombiana de Ciencias Hortícolas, 16(3) https://doi.org/10.17584/rcch.2022v16i3.15179.

9. Enry Facundo Jiménez-Bohórquez, Miguel Angel Díaz-Arias, Helber Enrique Balaguera-López. (2024). Exogenous brassinosteroids application in purple passion fruit plants grafted onto a sweet calabash passion fruit rootstock and under water stress. Revista Colombiana de Ciencias Hortícolas, 18(1) https://doi.org/10.17584/rcch.2024v18i1.16514.

10. Gerhard Fischer, Helber Enrique Balaguera-López, Luz Marina Melgarejo. (2024). Handbook of Goldenberry (Physalis Peruviana). , p.101. https://doi.org/10.1016/B978-0-443-15433-1.00010-8.

11. Rafael Antonio Guerrero-Díaz, Carlos David Pedraza-Correales, Eyvar Ariosto Olarte-Saavedra. (2023). Efecto de dos reguladores fisiológicos en la propagación asexual de uchuva (Physalis peruviana L.) en condiciones de invernadero. Ciencia y Agricultura, 20(2), p.16572. https://doi.org/10.19053/01228420.v20.n2.2023.16572.

12. Diego Alejandro Gutiérrez-Villamil, Javier Giovanni Álvarez-Herrera, Gerhard Fischer, Helber Enrique Balaguera-López. (2024). Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics. Agronomía Colombiana, 42(1), p.e111402. https://doi.org/10.15446/agron.colomb.v42n1.111402.

13. Mayerlin Orjuela-Angulo, Saúl Dussán-Sarria, Jesús Hernán Camacho-Tamayo. (2022). Effect of some edaphic conditions on physicochemical and physiological characteristics of ‘Horvin’ plum fruit. Revista Colombiana de Ciencias Hortícolas, 16(3) https://doi.org/10.17584/rcch.2022v16i3.15180.

14. Arti Bisht, Amit Bahukhandi, Basant Singh, Pushpa Kewlani, Veena Pande, Sandeep Rawat, Indra D. Bhatt. (2023). Morphological, Nutritional, Chemical and Antioxidant Potential of Mahonia Jaunsarensis Ahrendt Fruit: A Narrow Endemic Wild Edible Species of Western Himalaya . International Journal of Fruit Science, 23(1), p.70. https://doi.org/10.1080/15538362.2023.2205533.

15. Gerhard Fischer, Javier Orlando Orduz-Rodríguez, Cassandro Vidal Talamini do Amarante. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3) https://doi.org/10.17584/rcch.2022v16i3.15703.

16. Mayerlin Orjuela-Angulo, Helber Enrique Balaguera-Lopez, Gerhard Fischer. (2024). Determining of thermal time and base temperature during the reproductive phase of the Japanese plum in the tropical Andes. Revista Colombiana de Ciencias Hortícolas, 18(2) https://doi.org/10.17584/rcch.2024v18i2.17433.

17. Joaquín Guillermo Ramírez-Gil, Juan Camilo Henao-Rojas, Cipriano Arturo Diaz-Diez, Andrés Javier Peña-Quiñones, Nicolas León, Alfonso Parra-Coronado, Jorge Alonso Bernal-Estrada. (2023). Phenological variations of avocado cv. Hass and their relationship with thermal time under tropical conditions. Heliyon, 9(9), p.e19642. https://doi.org/10.1016/j.heliyon.2023.e19642.

18. Derya Kılıç, Oğuzhan Çalışkan, Safder Beyazit. (2024). ‘Sultan’ alıç çeşidinde yükselti ve yetiştirme sezonunun meyve kalite özelliklerine etkileri. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(1), p.224. https://doi.org/10.37908/mkutbd.1383824.

19. Andrea Johana Reyes Medina, Diego Alberto Castellanos Espinosa, Helber Enrique Balaguera-López. (2023). Physiology and biochemistry of naranjilla (Solanum quitoense Lam) fruit during postharvest and the main conservation strategies: A review. Agronomía Colombiana, 41(3), p.e110392. https://doi.org/10.15446/agron.colomb.v41n3.110392.

20. Richard Alexander Roncancio-Chaparro, Javier Giovanni Álvarez-Herrera, Julián Mauricio Molano-Díaz. (2022). Efecto de la ciclodextrina en la calidad de frutos de arándano (Vaccinium corymbosum L.) cv. Biloxi. Revista Colombiana de Ciencias Hortícolas, 16(3) https://doi.org/10.17584/rcch.2022v16i3.15398.

21. Roshani Gurung, Sabina Baral, Santosh Parajuli, Dhana Dhami, Sushila Ghimire, Hadi Hashemi Gahruie. (2022). A Comparative Study on Ascorbic Acid Concentration, Total Phenol, and Flavonoid Content in Citrus Species Grown in a Different Region of Western Nepal. International Journal of Food Science, 2022, p.1. https://doi.org/10.1155/2022/3012623.

22. Rubén Darío Rojas Pantoja, José René Jiménez Cardona, Daira Alicia del Pilar Cuarán Cuarán, Franco Alirio Vallejo Cabrera, Raul Dirceu Pazdiora, Creuci Maria Caetano. (2023). Genotipificación en introducciones de Capsicum chinense Jacq. mediante marcadores moleculares SSR fluorescentes. Magna Scientia UCEVA, 3(1), p.79. https://doi.org/10.54502/msuceva.v3n1a8.

23. Gerhard Fischer, Fánor Casierra-Posada, Stanislav Magnitskiy. (2024). Achieving Food Security Through Sustainable Agriculture. Advances in Environmental Engineering and Green Technologies. , p.317. https://doi.org/10.4018/979-8-3693-4240-4.ch013.

24. Omar Flor-Unda, Fernanda Guanochanga, Iván Samaniego, Verónica Arias, Bladimir Ortiz, Carmen Rosales, Hector Palacios-Cabrera. (2024). Physicochemical Characterization and Antioxidant Capacity of Açaí (Euterpe oleracea) in Ecuadorian Region. Foods, 13(19), p.3046. https://doi.org/10.3390/foods13193046.

25. Mariana Lucia Rojas-Rodríguez, Joaquín Guillermo Ramírez-Gil, Luis Felipe González-Concha, Helber Enrique Balaguera-López. (2023). Biostimulants Improve Yield and Quality in Preharvest without Impinging on the Postharvest Quality of Hass Avocado and Mango Fruit: Evaluation under Organic and Traditional Systems. Agronomy, 13(7), p.1917. https://doi.org/10.3390/agronomy13071917.

26. Mayerlin Orjuela-Angulo, Jesus H. Camacho-Tamayo, Helber E. Balaguera-López. (2024). Cultivation location and agrometeorological conditions influence pre-harvest variables of Japanese plum fruit in the Colombian tropics. Revista Brasileira de Engenharia Agrícola e Ambiental, 28(12) https://doi.org/10.1590/1807-1929/agriambi.v28n12e284789.

27. Sebastián Buitrago, Manuel Leandro, Gerhard Fischer. (2023). Symptoms and growth components in feijoa (Acca sellowiana [O. Berg] Burret) plants in response to calcium, magnesium and boron deficiencies. Revista Colombiana de Ciencias Hortícolas, 17(1) https://doi.org/10.17584/rcch.2023v17i1.15753.

28. Vitelbina Núñez-Rangel, Paola Rey-Suárez, Alejandro Serna, Jeisson Gómez-Robles, Armando Rey-Torres, Estefanía Morales. (2023). Antimicrobial activity of Bothrops asper and Porthidium nasutum venom on purple passion fruit (Passiflora edulis f. edulis) phytopathogens. Revista Colombiana de Ciencias Hortícolas, 17(3) https://doi.org/10.17584/rcch.2023v17i3.16474.

29. Enrique Quevedo-García, Miguel Antonio Murcia-Rodríguez, Martha Patricia Ochoa-Reyes. (2023). Modelos de regresión para predecir la cosecha con variables asociadas a la calidad del fruto, el tiempo de defoliación y la altitud del durazno Jarillo. Revista U.D.C.A Actualidad & Divulgación Científica, 26(2) https://doi.org/10.31910/rudca.v26.n2.2023.2235.

30. Fánor Casierra-Posada, Gerhard Fischer. (2024). Achieving Food Security Through Sustainable Agriculture. Advances in Environmental Engineering and Green Technologies. , p.340. https://doi.org/10.4018/979-8-3693-4240-4.ch014.

31. Andrés David Becerra, Santiago Quevedo-Rubiano, Stanislav Magnitskiy, Héctor Orlando Lancheros. (2022). Morphological responses of Andean blueberry (Vaccinium meridionale Swartz) plants growing in three environments at different altitudes. Revista Colombiana de Ciencias Hortícolas, 16(3) https://doi.org/10.17584/rcch.2022v16i3.15034.

Dimensions

PlumX

Article abstract page views

663

Downloads

Download data is not yet available.