Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content
1887
Volume 62, Issue 1
  • ISSN: 2056-5135

Abstract

World trade has transformed food retailing and driven the development of technology for the transportation and storage of horticultural products, providing year-round supply of fruit and vegetables. Horticultural produce is highly perishable, as fruit and vegetables continue their metabolic processes that lead to ripening and senescence after harvest, making them ultimately unmarketable. Advanced postharvest technologies are essential for reducing food waste while maintaining high standards of safety and quality. Together with cold storage, controlled atmosphere (CA) and modified atmosphere packaging (MAP) have been applied to alter the produce’s internal and external environment, decreasing its metabolic activity and extending shelf-life. Both CA and MAP have benefitted from technological innovation. Respiratory quotient control has improved the management of conventional and recently developed CA systems; gas scavengers have made MAP more efficient; and the inclusion of natural additives has enhanced food safety across the supply chain. This paper critically reviews the application of new postharvest techniques to manipulate gaseous environments and highlights areas that require further study.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696684
2018-01-01
2024-08-19
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/1/Terry_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696684&mimeType=html&fmt=ahah

References

  1. S. Sim, M. Barry, R. Clift, S. J. Cowell, Int. J. Life Cycle Assess., 2007, 12, (6), 422 LINK https://doi.org/10.1065/lca2006.07.259 [Google Scholar]
  2. R. E. Paull, Postharvest Biol. Technol., 1999, 15, (3), 263 LINK https://doi.org/10.1016/s0925-5214(98)00090-8 [Google Scholar]
  3. I. Dincer, “Refrigeration Systems and Applications”, 3rd Edn., John Wiley & Sons Ltd, Chichester, UK, 2017, 752 pp [Google Scholar]
  4. M. C. Sánchez-Mata, M. Cámara, C. Díez-Marqués, Food Chem., 2003, 80, (3), 309 LINK https://doi.org/10.1016/S0308-8146(02)00265-0 [Google Scholar]
  5. S. C. Fonseca, F. A. R. Oliveira, J. K. Brecht, J. Food Eng., 2002, 52, (2), 99 LINK https://doi.org/10.1016/S0260-8774(01)00106-6 [Google Scholar]
  6. A. Valls, F. García, M. Ramírez, J. Benlloch, Tunn. Undergr. Sp. Technol., 2015, 50, 178 LINK https://doi.org/10.1016/J.TUST.2015.07.003 [Google Scholar]
  7. R. M. Beaudry, Postharvest Biol. Technol., 1999, 15, (3), 293 LINK https://doi.org/10.1016/S0925-5214(98)00092-1 [Google Scholar]
  8. D. G. Dalrymple, Technol. Cult., 1969, 10, (1), 35 LINK https://doi.org/10.2307/3102002 [Google Scholar]
  9. F. Kidd, C. West, “A Relation Between the Respiratory Activity and the Keeping Quality of Apples”, Report of the Food Investigation Board London for 1925 and 1926, pp. 37–41 [Google Scholar]
  10. R. M. Smock, ‘Controlled Atmosphere Storage of Fruits’, in “Horticultural Reviews”, ed. J. Janick, 1, The AVI Publishing Company Inc, Connecticut, USA, 1979, pp. 301–336 LINK https://doi.org/10.1002/9781118060742.ch8 [Google Scholar]
  11. K. P. Wright, A. A. Kader, Postharvest Biol. Technol., 1997, 10, (1), 89 LINK https://doi.org/10.1016/s0925-5214(96)00062-2 [Google Scholar]
  12. L. A. Abayomi, L. A. Terry, J. Sci. Food Agric., 2009, 89, (4), 683 LINK https://doi.org/10.1002/jsfa.3502 [Google Scholar]
  13. M. Carmen Alamar, E. Collings, K. Cools, L. A. Terry, Postharvest Biol. Technol., 2017, 134, 76 LINK https://doi.org/10.1016/j.postharvbio.2017.08.003 [Google Scholar]
  14. E. Pesis, D. Aharoni, Z. Aharon, R. Ben-Arie, N. Aharoni, Y. Fuchs, Postharvest Biol. Technol., 2000, 19, (1), 93 LINK https://doi.org/10.1016/s0925-5214(00)00080-6 [Google Scholar]
  15. S. Lurie, C. H. Crisosto, Postharvest Biol. Technol., 2005, 37, (3), 195 LINK https://doi.org/10.1016/j.postharvbio.2005.04.012 [Google Scholar]
  16. S. P. Singh, Z. Singh, Int. J. Food Sci. Technol., 2012, 48, (2), 363 LINK https://doi.org/10.1111/j.1365-2621.2012.03196.x [Google Scholar]
  17. M. del Carmen Alamar, N. Falagán, E. Aktas, L. A. Terry, J. Sci. Food Agric., 2017, 98, (1), 8 LINK https://doi.org/10.1002/jsfa.8708 [Google Scholar]
  18. L. G. Neven, L. Rehfield-ray, J. Econ. Entomol., 2006, 99, (3), 658 LINK https://doi.org/10.1093/jee/99.3.658 [Google Scholar]
  19. W. Li, K. Wang, L. Chen, J. A. Johnson, S. Wang, J. Stored Prod. Res., 2015, 62, 52 LINK https://doi.org/10.1016/j.jspr.2015.04.001 [Google Scholar]
  20. A. K. Thompson, “Controlled Atmosphere Storage of Fruits and Vegetables”, CABI International, London, UK, 2010, 288 pp [Google Scholar]
  21. “Crop Post-Harvest: Science and Technology: Perishables”, eds. D. Rees, G. Farrell, J. Orchard, 3, Blackwell Publishing Ltd, Chicester, UK, 2012, 464 pp [Google Scholar]
  22. G. A. Chope, L. A. Terry, P. J. White, Postharvest Biol. Technol., 2007, 44, (3), 228 LINK https://doi.org/10.1016/j.postharvbio.2006.12.018 [Google Scholar]
  23. N. Bessemans, P. Verboven, B. E. Verlinden, B. M. Nicolaï, Postharvest Biol. Technol., 2016, 115, 91 LINK https://doi.org/10.1016/j.postharvbio.2015.12.019 [Google Scholar]
  24. J. Graell, C. Larrigaudiere, M. Vendrell, Food Sci. Technol. Int., 1997, 3, (3), 203 LINK https://doi.org/10.1177/108201329700300308 [Google Scholar]
  25. M. L. Lopez, M. T. Lavilla, I. Recasens, J. Graell, M. Vendrell, J. Sci. Food Agric., 2000, 80, (3), 311 LINK https://doi.org/10.1002/1097-0010(200002)80:3<311::AID-JSFA519>3.0.CO;2-F [Google Scholar]
  26. C. D. Gran, R. M. Beaudry, Postharvest Biol. Technol., 1993, 3, (3), 259 LINK https://doi.org/10.1016/0925-5214(93)90061-7 [Google Scholar]
  27. P. G. Lévesque, J. R. DeEll, D. P. Murr, HortScience, 2006, 41, (5), 1322 LINK http://hortsci.ashspublications.org/content/41/5/1322.full.pdf+html [Google Scholar]
  28. Z. Wang, D. R. Dilley, Acta Hortic., 2001, 553, 261 LINK https://doi.org/10.17660/ActaHortic.2001.553.58 [Google Scholar]
  29. M. E. Saltveit, Postharvest Biol. Technol., 2003, 27, (1), 3 LINK https://doi.org/10.1016/S0925-5214(02)00184-9 [Google Scholar]
  30. D. T. Tran, B. E. Verlinden, M. Hertog, B. M. Nicolaï, Sci. Hortic. Amsterdam, 2015, 184, 18 LINK https://doi.org/10.1016/j.scienta.2014.11.014 [Google Scholar]
  31. A. Zanella, Postharvest Biol. Technol., 2003, 27, (1), 69 LINK https://doi.org/10.1016/s0925-5214(02)00187-4 [Google Scholar]
  32. R. K. Prange, A. H. Wright, J. M. DeLong, A. Zanella, Acta Hortic., 2013, 1012, 905 LINK https://doi.org/10.17660/actahortic.2013.1012.122 [Google Scholar]
  33. S. P. Schouten, R. K. Prange, J. Verschoor, T. R. Lammers, J. Oosterhaven, IFAC Proc. Vol., 1998, 31, (9), 25 LINK https://doi.org/10.1016/s1474-6670(17)44023-7 [Google Scholar]
  34. H. Juncai, H. Yaohua, G. Kangquan, Int. J. Agric. Biol. Eng., 2014, 7, (5), 71 LINK https://www.ijabe.org/index.php/ijabe/article/view/1260 [Google Scholar]
  35. J. R. DeEll, O. van Kooten, R. K. Prange, D. P. Murr, Hortic. Rev., 1999, 23, (2), 69 [Google Scholar]
  36. R. K. Prange, J. M. DeLong, A. H. Wright, Acta Hortic., 2012, 945, 89 LINK https://doi.org/10.17660/actahortic.2012.945.10 [Google Scholar]
  37. J. P. Mattheis, D. Rudell, Postharvest Biol. Technol., 2011, 60, (2), 125 LINK https://doi.org/10.1016/j.postharvbio.2010.12.007 [Google Scholar]
  38. P. V. Mahajan, A. Luca, M. Edelenbos, Comput. Electron. Agr., 2016, 121, 347 LINK https://doi.org/10.1016/j.compag.2015.12.017 [Google Scholar]
  39. N. Bessemans, P. Verboven, B. E. Verlinden, B. M. Nicolaï, Postharvest Biol. Technol., 2018, 136, 31 LINK https://doi.org/10.1016/j.postharvbio.2017.09.011 [Google Scholar]
  40. “Eco-Friendly Technology for Postharvest Produce Quality”, ed. M. W. Siddiqui, Elsevier Inc, Boston, USA, 2016 [Google Scholar]
  41. W. Yang, L. Duan, G. Chen, L. Xiong, Q. Liu, Curr. Opin. Plant Biol., 2013, 16, (2), 180 LINK https://doi.org/10.1016/j.pbi.2013.03.005 [Google Scholar]
  42. L. A. Terry, T. Ilkenhans, S. Poulston, L. Rowsell, A. W. J. Smith, Postharvest Biol. Technol., 2007, 45, (2), 214 LINK https://doi.org/10.1016/j.postharvbio.2006.11.020 [Google Scholar]
  43. H. P. J. de Wild, E. J. Woltering, H. W. Peppelenbos, J. Exp. Botany, 1999, 50, (335), 837 LINK https://doi.org/10.1093/jxb/50.335.837 [Google Scholar]
  44. S. M. Blankenship, J. M. Dole, Postharvest Biol. Technol., 2003, 28, (1), 1 LINK https://doi.org/10.1016/S0925-5214(02)00246-6 [Google Scholar]
  45. L. Li, A. Lichter, D. Chalupowicz, D. Gamrasni, T. Goldberg, O. Nerya, R. Ben-Arie, R. Porat, Postharvest Biol. Technol., 2016, 111, 322 LINK https://doi.org/10.1016/j.postharvbio.2015.09.031 [Google Scholar]
  46. C. B. Watkins, Biotechnol. Adv., 2006, 24, (4), 389 LINK https://doi.org/10.1016/j.biotechadv.2006.01.005 [Google Scholar]
  47. N. Falagán, F. Artés, F. Artés-Hernández, P. A. Gómez, A. Pérez-Pastor, E. Aguayo, Postharvest Biol. Technol., 2015, 110, 24 LINK https://doi.org/10.1016/j.postharvbio.2015.07.011 [Google Scholar]
  48. N. Bessemans, P. Verboven, B. Verlinden, B. Nicolai, ‘Comparative Study of RQ-DCA and DCA-CF Technology for Storage of Golden Delicious Apple Fruit’, XII International Controlled & Modified Atmosphere Research Conference (CaMa2017),Warsaw, Poland,18th–22nd June, 2017 [Google Scholar]
  49. M. Oliveira, M. Abadias, J. Usall, R. Torres, N. Teixidó, I. Viñas, Trends Food Sci. Technol., 2015, 46, (1), 13 LINK https://doi.org/10.1016/j.tifs.2015.07.017 [Google Scholar]
  50. R. Beaudry, ‘MAP as a Basis for Active Packaging’, in “Intelligent and Active Packaging for Fruits and Vegetables”, ed. C. L. Wilson, Taylor and Francis Group LLC, Boca Raton, USA, 2007, pp. 31–56 [Google Scholar]
  51. M. del Carmen Villalobos, M. J. Serradilla, A. Martín, A. Hernández-León, S. Ruíz-Moyano, M. de G. Córdoba, Food Microbiol., 2017, 63, 35 LINK https://doi.org/10.1016/j.fm.2016.10.035 [Google Scholar]
  52. N. Somboonkaew, L. A. Terry, Postharvest Biol. Technol., 2010, 56, (3), 246 LINK https://doi.org/10.1016/j.postharvbio.2010.01.009 [Google Scholar]
  53. N. Peelman, P. Ragaert, A. Vandemoortele, E. Verguldt, B. De Meulenaer, F. Devlieghere, Innov. Food Sci. Emerg. Technol., 2014, 26, 319 LINK https://doi.org/10.1016/j.ifset.2014.06.007 [Google Scholar]
  54. M. Zhang, X. Meng, B. Bhandari, Z. Fang, Crit. Rev. Food Sci. Nutr., 2015, 56, (13), 2174 LINK https://doi.org/10.1080/10408398.2013.819794 [Google Scholar]
  55. C. Ghidelli, M. B. Pérez-Gago, Crit. Rev. Food Sci. Nutr., 2016, 1 LINK https://doi.org/10.1080/10408398.2016.1211087 [Google Scholar]
  56. M. Giménez, C. Olarte, S. Sanz, C. Lomas, J. F. Echávarri, F. Ayala, Food Microbiol., 2003, 20, (2), 231 LINK https://doi.org/10.1016/s0740-0020(02)00146-6 [Google Scholar]
  57. G. D. Posada-Izquierdo, F. Pérez-Rodríguez, F. López-Gálvez, A. Allende, M. I. Gil, G. Zurera, Int. J. Food Microbiol., 2014, 177, 1 LINK https://doi.org/10.1016/j.ijfoodmicro.2013.12.025 [Google Scholar]
  58. I. Siro, F. Devlieghere, L. Jacxsens, M. Uyttendaele, J. Debevere, Int. J. Food Sci. Technol., 2006, 41, (1), 93 LINK https://doi.org/10.1111/j.1365-2621.2005.01046.x [Google Scholar]
  59. A. Mistriotis, D. Briassoulis, A. Giannoulis, S. D’Aquino, Postharvest Biol. Technol., 2016, 111, 380 LINK https://doi.org/10.1016/j.postharvbio.2015.09.022 [Google Scholar]
  60. V. Siracusa, P. Rocculi, S. Romani, M. D. Rosa, Trends Food Sci. Technol., 2008, 19, (12), 634 LINK https://doi.org/10.1016/j.tifs.2008.07.003 [Google Scholar]
  61. M. D. Wilson, R. A. Stanley, A. Eyles, T. Ross, Crit. Rev. Food Sci. Nutr., 2017, 1 LINK https://doi.org/10.1080/10408398.2017.1375892 [Google Scholar]
  62. R. Clarke, ‘Breatheway® Membrane Technology and Modified Atmosphere Packaging’, in “Modified Atmosphere Packaging for Fresh-Cut Fruits and Vegetables”, eds. A. L. Brody, H. Zhuang, J. H. Han, Blackwell Publishing Ltd, Chichester, UK, 2011, pp. 185208 LINK https://doi.org/10.1002/9780470959145.ch9 [Google Scholar]
  63. O. J. Caleb, P. V. Mahajan, F. A. Al-Said, U. L. Opara, CyTA J. Food, 2013, 11, (3), 199 LINK https://doi.org/10.1080/19476337.2012.721807 [Google Scholar]
  64. Z. A. Belay, O. J. Caleb, U. L. Opara, Food Packag. Shelf Life, 2016, 10, 1 LINK https://doi.org/10.1016/j.fpsl.2016.08.001 [Google Scholar]
  65. M. J. Sousa-Gallagher, P. V. Mahajan, Food Control, 2013, 29, (2), 444 LINK https://doi.org/10.1016/j.foodcont.2012.05.072 [Google Scholar]
  66. M. Eleftheriadou, G. Pyrgiotakis, P. Demokritou, Curr. Opin. Biotechnol., 2017, 44, 87 LINK https://doi.org/10.1016/j.copbio.2016.11.012 [Google Scholar]
  67. X. Meng, M. Zhang, B. Adhikari, Postharvest Biol. Technol., 2012, 71, 13 LINK https://doi.org/10.1016/j.postharvbio.2012.04.006 [Google Scholar]
  68. A. Tomás-Callejas, M. Boluda, P. A. Robles, F. Artés, F. Artés-Hernández, LWT – Food Sci. Technol., 2011, 44, (6), 1422 LINK https://doi.org/10.1016/j.lwt.2011.01.020 [Google Scholar]
  69. M. Zhang, Z. G. Zhan, S. J. Wang, J. M. Tang, LWT – Food Sci. Technol., 2008, 41, (4), 686 LINK https://doi.org/10.1016/j.lwt.2007.04.011 [Google Scholar]
  70. “Modified and Controlled Atmospheres for the Storage, Transportation, and Packaging of Horticultural Commodities”, ed. E. M. Yahia, Taylor and Francis Group LLC, Boca Raton, USA, 2009, 608 pp [Google Scholar]
  71. A. L. Brown, J. C. Brooks, E. Karunasena, A. Echeverry, A. Laury, M. M. Brashears, J. Food Sci., 2011, 76, (6), M427 LINK https://doi.org/10.1111/j.1750-3841.2011.02260.x [Google Scholar]
  72. M. Maghoumi, P. A. Gómez, F. Artés-Hernández, Y. Mostofi, Z. Zamani, F. Artés, J. Sci. Food Agric., 2012, 93, (5), 1162 LINK https://doi.org/10.1002/jsfa.5868 [Google Scholar]
  73. T. Jiang, Postharvest Biol. Technol., 2013, 76, 91 LINK https://doi.org/10.1016/j.postharvbio.2012.09.005 [Google Scholar]
  74. G. Oms-Oliu, R. M. Raybaudi-Massilia Martínez, R. Soliva-Fortuny, O. Martín-Belloso, Food Control, 2008, 19, (2), 191 LINK https://doi.org/10.1016/j.foodcont.2007.03.009 [Google Scholar]
  75. F. López-Gálvez, P. Ragaert, M. A. Haque, M. Eriksson, M. C. van Labeke, F. Devlieghere, Postharvest Biol. Technol., 2015, 100, 168 LINK https://doi.org/10.1016/j.postharvbio.2014.10.001 [Google Scholar]
  76. A. Amanatidou, R. A. Slump, L. G. M. Gorris, E. J. Smid, J. Food Sci., 2000, 65, (1), 61 LINK https://doi.org/10.1111/j.1365-2621.2000.tb15956.x [Google Scholar]
  77. R. C. Soliva-Fortuny, O. Martín-Belloso, Trends Food Sci. Technol., 2003, 14, (9), 341 LINK https://doi.org/10.1016/s0924-2244(03)00054-2 [Google Scholar]
  78. G. Tewari, D. S. Jayas, L. E. Jeremiah, R. A. Holley, Int. J. Food Sci. Technol., 2002, 37, (2), 209 LINK https://doi.org/10.1046/j.1365-2621.2002.00558.x [Google Scholar]
  79. R. S. Cruz, G. P. Camilloto, A. C. dos Santos Pires, ‘Oxygen Scavengers: An Approach on Food Preservation’, in “Structure and Function of Food Engineering”, ed. A. A. Eissa, InTech, Rijeka, Croatia, 2012, pp. 2142 LINK https://doi.org/10.5772/48453 [Google Scholar]
  80. D. A. Pereira de Abreu, P. Paseiro Losada, J. Maroto, J. M. Cruz, Innov. Food Sci. Emerg. Technol., 2011, 12, (1), 50 LINK https://doi.org/10.1016/J.IFSET.2010.12.006 [Google Scholar]
  81. D. S. Lee, Trends Food Sci. Technol., 2016, 57, Part A, 146 LINK https://doi.org/10.1016/j.tifs.2016.09.014 [Google Scholar]
  82. B. Kuswandi, Y. Wicaksono, Jayus, A. Abdullah, L. Y. Heng, M. Ahmad, Sens. Instrum. Food Qual., 2011, 5, (3–4), 137 LINK https://doi.org/10.1007/s11694-011-9120-x [Google Scholar]
  83. R. Jedermann, M. Nicometo, I. Uysal, W. Lang, Philos. Trans. Roy. Soc. A, 2014, 372, (2017), 20130302 LINK https://doi.org/10.1098/rsta.2013.0302 [Google Scholar]
  84. J. K. Brecht, F. E. Loaza, M. C. N. Nunes, J. P. Emond, I. Uysal, F. Badia, J. Wells, J. Saenz, Acta Hortic., 2016, 1120, 253 LINK https://doi.org/10.17660/ActaHortic.2016.1120.38 [Google Scholar]
  85. J. G. Bordonaba, L. A. Terry, J. Agric. Food Chem., 2009, 57, (18), 8220 LINK https://doi.org/10.1021/jf901596w [Google Scholar]
  86. X. Meng, S. Kim, P. Puligundla, S. Ko, J. Korean Soc. Appl. Biol. Chem., 2014, 57, (6), 723 LINK https://doi.org/10.1007/s13765-014-4180-3 [Google Scholar]
  87. A. W. Hempel, R. N. Gillanders, D. B. Papkovsky, J. P. Kerry, Int. J. Dairy Technol., 2012, 65, (3), 456 LINK https://doi.org/10.1111/j.1471-0307.2012.00849.x [Google Scholar]
  88. C. Lang, T. Hübert, Food Bioprocess Technol., 2012, 5, (8), 3244 LINK https://doi.org/10.1007/s11947-011-0694-4 [Google Scholar]
  89. P. M. A. Toivonen, E. J. Mitcham, L. A. Terry, ‘Postharvest Care and the Treatment of Fruits and Vegetables’, in “Horticulture: Plants for People and Places”, eds. G. Dixon, D. Aldous, 1, Springer Science+Business Media, Dordrecht, Netherlands, 2014, pp. 465483 LINK https://doi.org/10.1007/978-94-017-8578-5_13 [Google Scholar]
  90. R. K. Dhall, Crit. Rev. Food Sci. Nutr., 2013, 53, (5), 435 LINK https://doi.org/10.1080/10408398.2010.541568 [Google Scholar]
  91. I. Arvanitoyannis, L. Gorris, ‘Edible and Biodegradable Polymeric Materials for Food Packaging or Coating’, in “Processing Foods: Quality Optimization and Process Assessment”, eds. F. A. R. Oliveira, J. C. Oliveira, CRC Press LLC, Boca Raton, USA, 1999, pp. 357372 [Google Scholar]
  92. J. M. Valverde, D. Valero, D. Martínez-Romero, F. Guillén, S. Castillo, M. Serrano, J. Agric. Food Chem., 2005, 53, (20), 7807 LINK https://doi.org/10.1021/jf050962v [Google Scholar]
  93. N. Falagán, F. Artés, E. Aguayo, Food Sci. Technol. Int., 2016, 22, (5), 429 LINK https://doi.org/10.1177/1082013215621816 [Google Scholar]
  94. K. Chitravathi, O. P. Chauhan, P. S. Raju, J. Food Sci. Technol., 2016, 53, (8), 3320 LINK https://doi.org/10.1007/s13197-016-2309-6 [Google Scholar]
  95. B. Marelli, M. A. Brenckle, D. L. Kaplan, F. G. Omenetto, Sci. Rep., 2016, 6, 25263 LINK https://doi.org/10.1038/srep25263 [Google Scholar]
  96. S. Burt, Int. J. Food Microbiol., 2004, 94, (3), 223 LINK https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 [Google Scholar]
  97. C. Chawengkijwanich, Y. Hayata, Int. J. Food Microbiol., 2008, 123, (3), 288 LINK https://doi.org/10.1016/J.IJFOODMICRO.2007.12.017 [Google Scholar]
  98. S. H. Othman, N. R. Abd Salam, N. Zainal, R. K. Basha, R. A. Talib, Int. J. Photoenergy, 2014, 945930 LINK https://doi.org/10.1155/2014/945930 [Google Scholar]
  99. A. B. Cabezas-Serrano, M. L. Amodio, G. Colelli, Postharvest Biol. Technol., 2013, 75, 17 LINK https://doi.org/10.1016/j.postharvbio.2012.07.006 [Google Scholar]
  100. F. Nigro, A. Ippolito, Acta Hortic., 2016, 1144, 293 LINK https://doi.org/10.17660/ActaHortic.2016.1144.43 [Google Scholar]
  101. D. Li, Z. Luo, W. Mou, Y. Wang, T. Ying, L. Mao, Postharvest Biol. Technol., 2014, 90, 56 LINK https://doi.org/10.1016/j.postharvbio.2013.12.006 [Google Scholar]
/content/journals/10.1595/205651318X696684
Loading
/content/journals/10.1595/205651318X696684
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test