Abstract
Ground-breaking optical wireless power transfer (OWPT) techniques have gained significant attention from both academia and industry in recent decades. Powering remote systems through laser diodes (LDs) to either operate devices or recharge batteries offers several benefits. Remote LDs can remove the burden of carrying extra batteries and can reduce mission time by removing battery swap-time and charging. Apart from its appealing benefits, laser power transfer (LPT) is still a challenging task due to its low transfer efficiency. In this paper, we discuss the necessity and feasibility of OWPT and discuss several projects, working principle, system design, and components. In addition, we show that OWPT is an essential element to supply power to Internet-of-Things (IoT) terminals. We also highlight the impacts of dynamic OWPT. We outline several OWPT techniques including optical beamforming, distributed laser charging (DLC), adaptive-DLC (ADLC), simultaneous lightwave information and power transfer (SLIPT), Thing-to-Thing (T2T) OWPT, and high intensity laser power beaming (HILPB). We also deal with laser selection, hazard analysis, and received photovoltaic (PV) cell selection for OWPT systems. Finally, we discuss a range of open challenges and counter measures. We believe that this review will be helpful in integrating research and eliminating technical uncertainties, thereby promoting progress and innovation in the development of OWPT technologies.
摘要
近几十年来, 开创性的光无线能量传输(OWPT)技术在学术界和业内专家中都得到广泛关注. 通过激光二极管(LDs)对操作设备或电池远程供电有很多优点. 远程LDs可以消除额外携带电池的负担, 同时可以通过减少电池更换与充电的时间来节省任务时间. 然而激光能量传输(LPT)除了具有吸引人的优点外, 因其传输效率低, 仍然是一项具有挑战性的任务. 此篇综述讨论了OWPT的必要性和可行性, 并讨论了其工作原理、 系统设计和组件等. 此外, 还表明了OWPT是为物联网(IoT)终端供电的必要部分, 强调了动态OWPT的影响. 本文概述了几种OWPT技术, 包括光波束赋形、 分布式激光充电(DLC)、 自适应分布式激光充电(ADLC)、 同步无线信息与功率传输(SLIPT)、 物对物(T2T)OWPT和高强度激光能量束(HILPB), 还论述了OWPT系统的激光选择、 危害分析和接收器太阳能电池的选择. 最后, 讨论了一系列公开挑战和应对措施. 我们相信, 此篇综述将有助于整合研究和消除技术不确定性, 从而促进OWPT技术发展的进步和创新.
References
Alpert O, Paschotta R, 2013. Wireless Laser System for Power Transmission Utilizing a Gain Medium Between Retroreflectors. Google Patents US20170373543A1.
Alsulaiman SM, Alrushood AA, Almasaud J, et al., 2014. High-power handheld blue laser-induced maculopathy: the results of the King Khaled Eye Specialist Hospital Collaborative Retina Study Group. Ophthalmology, 121(2): 566–572.el. https://doi.org/10.1016/j.ophtha.2013.09.006
Becker DE, Chiang R, Keys CC, et al., 2010. Photovoltaic-concentrator based power beaming for space elevator application. AIP Conf Proc, 1230(1):271–281. https://doi.org/10.1063/1.3435443
Boyle A, 2018. Charging your smartphone with lasers? Engineers say it’s not as scary as it sounds. https://www.geekwire.com/2018/charging-smartphone-lasers-not-scary-sounds/ [Accessed on Mar. 1, 2021].
Breton D, Delagnes E, Maalmi J, et al., 2011. High resolution photon timing with MCP-PMTs: a comparison of a commercial constant fraction discriminator (CFD) with the ASIC-based waveform digitizers TARGET and Wave-Catcher. Nucl Instrum Methods Phys Res Sect, 629(1): 123–132. https://doi.org/10.1016/j.nima.2010.10.087
Carron C, 2018. Future of Drones: in-Flight Charging via Lab-Grown Diamonds. https://dronebelow.com/2018/11/08/future-of-drones-in-flight-charging-via-lab-grown-diamonds/ [Accessed on Mar. 1, 2021].
Clark SS, Gummeson J, Fu K, et al., 2009. Towards autonomously-powered CRFIDs. Proc ACM Workshop on Power Aware Computing and Systems.
Costanzo A, Dionigi M, Masotti D, et al., 2014. Electromagnetic energy harvesting and wireless power transmission: a unified approach. Proc IEEE, 102(11):1692–1711. https://doi.org/10.1109/JPROC.2014.2355261
Crump P, Grimshaw M, Wang J, et al., 2006. 85% power conversion efficiency 975-nm broad area diode lasers at −50 °C, 76% at 10 °C. Proc Conf on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conf, p.1–2. https://doi.org/10.1109/CLEO.2006.4628740
Crump P, Dong WM, Grimshaw M, et al., 2007. 100-W+ diode laser bars show >71% power conversion from 790-nm to 1000-nm and have clear route to >85%. Proc SPIE 6456, High-Power Diode Laser Technology and Applications V, Article 64560M. https://doi.org/10.1117/12.704496
Crump P, Erbert G, Wenzel H, et al., 2013. Efficient highpower laser diodes. IEEE J Sel Top Quant Electron, 19(4): 1501211. https://doi.org/10.1109/JSTQE.2013.2239961
Dasgupta A, Mennemanteuil MM, Buret M, et al., 2018. Optical wireless link between a nanoscale antenna and a transducing rectenna. Nat Commun, 9:1992. https://doi.org/10.1038/s41467-018-04382-7
de Luca D, Delfino I, Lepore M, 2012. Laser safety standards and measurements of hazard parameters for medical lasers. Int J Opt Appl, 2(6):80–86. https://doi.org/10.5923/j.optics.20120206.01
de Oliveira Filho JI, Trichili A, Ooi BS, et al., 2020. Toward self-powered Internet of underwater things devices. IEEE Commun Mag, 58(1):68–73. https://doi.org/10.1109/mcom.001.1900413
Deppe DG, 2018. High Rel/Speed/Harsh Environment VCSEL Development. AFRL-RV-PSTR-2018-0084, University of Central Florida, Florida, USA.
Deppe DG, Li MX, Yang X, et al., 2018. Advanced VCSEL technology: self-heating and intrinsic modulation response. IEEE J Quant Electron, 54(3):2400209. https://doi.org/10.1109/JQE.2018.2826718
Diamantoulakis PD, Pappi KN, Karagiannidis GK, et al., 2017. Joint downlink/uplink design for wireless powered networks with interference. IEEE Access, 5:1534–1547. https://doi.org/10.1109/ACCESS.2017.2657801
Diamantoulakis PD, Karagiannidis GK, Ding ZG, 2018. Simultaneous lightwave information and power transfer (SLIPT). IEEE Trans Green Commun Netw, 2(3):764–773. https://doi.org/10.1109/TGCN.2018.2818325
Ding JP, Liu WW, I CL, et al., 2020. Advanced progress of optical wireless technologies for power industry: an overview. Appl Sci, 10(10):6463. https://doi.org/10.3390/app10186463
Duncan KJ, 2016. Laser based power transmission: component selection and laser hazard analysis. Proc IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, p.100–103. https://doi.org/10.1109/WoW.2016.7772073
Fafard S, York MCA, Proulx F, et al., 2016. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl Phys Lett, 108(7):071101. https://doi.org/10.1063/1.4941240
Fakharzadeh M, Chaudhuri SK, Safavi-Naeini S, 2008. Optical beamforming with tunable ring resonators. Proc IEEE Antennas and Propagation Society Int Symp, p.1–4. https://doi.org/10.1109/APS.2008.4618977
Fakidis J, Ijaz M, Kucera S, et al., 2014. On the design of an optical wireless link for small cell backhaul communication and energy harvesting. Proc 25th Annual Int Symp on Personal, Indoor, and Mobile Radio Communication, p.58–62. https://doi.org/10.1109/PIMRC.2014.7136132
Fakidis J, Kucera S, Claussen H, et al., 2015. On the design of a free space optical link for small cell backhaul communication and power supply. Proc IEEE Int Conf on Communication Workshop, p.1428–1433. https://doi.org/10.1109/ICCW.2015.7247379
Fakidis J, Videv S, Kucera S, et al., 2016. Indoor optical wireless power transfer to small cells at nighttime. J Lightw Technol, 34(13):3236–3258. https://doi.org/10.1109/JLT.2016.2555883
Fakidis J, Videv S, Helmers H, et al., 2018. 0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell. IEEE Photon Technol Lett, 30(9):841–844. https://doi.org/10.1109/LPT.2018.2815273
Fakidis J, Helmers H, Haas H, 2020. Simultaneous wireless data and power transfer for a 1-Gb/s GaAs VCSEL and photovoltaic link. IEEE Photon Technol Lett, 32(9):1277–1280. https://doi.org/10.1109/LPT.2020.3018960
Fang W, Zhang QQ, Liu QW, et al., 2019. Fair scheduling in resonant beam charging for IoT devices. IEEE Int Things J, 6(1):641–653. https://doi.org/10.1109/JIOT.2018.2853546
Fördös T, Postava K, Jaffrès H, et al., 2018. Mueller matrix ellipsometric study of multilayer spin-VCSEL structures with local optical anisotropy. Appl Phys Lett, 112(22): 221106. https://doi.org/10.1063/1.5009411
Gallo P, 2019. Diamond and wireless energy transmission. Proc Diamond Photonics—Physics, Technologies and Applications, p.129. https://doi.org/10.1364/DP.2019.129
Gibbs Y, 2017. NASA Armstrong Fact Sheet: Beamed Laser Power for UAVs. National Aeronautics and Space Administration. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-087-DFRC.html [Accessed on Mar. 1, 2021].
Gies D, 2019. Safety of free-space optical communication systems. Proc IEEE Int Symp on Product Compliance Engineering, p.1–3. https://doi.org/10.1109/ISPCE.2019.8771345
Gong J, Zhou S, Niu ZS, 2013. Optimal power allocation for energy harvesting and power grid coexisting wireless communication systems. IEEE Trans Commun, 61(7): 3040–3049. https://doi.org/10.1109/TCOMM.2013.05301313.120705
Goto K, Nakagawa T, Nakamura O, et al., 2001. An implantable power supply with an optically rechargeable lithium battery. IEEE Trans Biomed Eng, 48(7):830–833. https://doi.org/10.1109/10.930908
Grabherr M, Miller M, Jager R, et al., 1999. High-power VCSELs: single devices and densely packed 2-D-arrays. IEEE J Sel Top Quant Electron, 5(3):495–502. https://doi.org/10.1109/2944.788411
Gray JL, 2003. The physics of the solar cell. In: Luque A, Hegedus S (Eds.), Handbook of Photovoltaic Science and Engineering. John Wiley, Hoboken, USA, p.82–128. https://doi.org/10.1002/0470014008.ch3
Green MA, Emery K, Hishikawa Y, et al., 2015. Solar cell efficiency tables (version 46). Prog Photovolt, 23(7):805–812. https://doi.org/10.1002/pip.2637
Gu SX, Guo SX, Zheng L, 2020. A highly stable and efficient spherical underwater robot with hybrid propulsion devices. Auton Robot, 44(5):759–771. https://doi.org/10.1007/s10514-019-09895-8
Haydaroglu I, Mutlu S, 2015. Optical power delivery and data transmission in a wireless and batteryless microsystem using a single light emitting diode. J Microelectromech Syst, 24(1):155–165. https://doi.org/10.1109/JMEMS.2014.2323202
He T, Yang SH, Zhang HY, et al., 2014. High-power high-efficiency laser power transmission at 100 m using optimized multi-cell GaAs converter. Chin Phys Lett, 31(10): 104203. https://doi.org/10.1088/0256-307X/31/10/104203
Hecht E, 2001. Modern optics: lasers and other topics. In: Hecht E (Ed.), Optics (4th Ed.), p.581–648.
Hirota M, Iio S, Ohta Y, et al., 2015. Wireless power transmission between a NIR VCSEL array and silicon solar cells. Proc 20th Microoptics Conf, p.1–2. https://doi.org/10.1109/MOC.2015.7416493
Ho SL, Wang JH, Fu WN, et al., 2011. A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging. IEEE Trans Magn, 47(5): 1522–1525. https://doi.org/10.1109/TMAG.2010.2091495
Hoffert E, Soukup P, Hoffert M, 2004. Power beaming for space-based electricity on Earth: near-term experiments with radars, lasers and satellites. Proc 4th Int Conf on Solar Power from Space, p.195.
Höhn O, Walker AW, Bett AW, et al., 2016. Optimal laser wavelength for efficient laser power converter operation over temperature. Appl Phys Lett, 108(24):241104. https://doi.org/10.1063/L4954014
Hu SQ, Liu HJ, Zhao LF, et al., 2020. The link attenuation model based on Monte Carlo simulation for laser transmission in fog channel. IEEE Photon J, 12(4):6100910. https://doi.org/10.1109/JPHOT.2020.3006853
IEC, 2007. Safety of Laser Products—Part 1: Equipment Classification and Requirements. IEC 60825-1.
Iga K, 2008. Vertical-cavity surface-emitting laser: its conception and evolution. Jpn J Appl Phys, 47(1R):1. https://doi.org/10.1143/JJAP.47.1
International Commission on Non-Ionizing Radiation Protection (ICNIRP), 2013. ICNIRP guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 µm. Health Phys, 105(3):271–295. https://doi.org/10.1097/HP.0b013e3182983fd4
Ishikawa R, Kato T, Anzo R, et al., 2020. Widegap CH3NH3PbBr3 solar cells for optical wireless power transmission application. Appl Phys Lett, 117(1):013902. https://doi.org/10.1063/5.0010009
Iwai N, Takaki K, Shimizu H, et al., 2009. 1060 nm VCSEL array for optical interconnection. Furukawa Rev, 36:1–4.
Iyer V, Bayati E, Nandakumar R, et al., 2018. Charging a smartphone across a room using lasers. Proc ACM Interact Mob Wear Ubiq Technol, 1(4):143. https://doi.org/10.1145/3161163
Jaafar W, Yanikomeroglu H, 2021. Dynamics of laser-charged UAVs: a battery perspective. IEEE Int Things J, 8(13): 10573–10582. https://doi.org/10.1109/JIOT.2020.3048087
Jaffe P, Borders K, Browne C, et al., 2019. Opportunities and Challenges for Space Solar for Remote Installations. NRL/MR/8243-19-9813, Naval Research Laboratory, Washington, DC, USA.
Jäger R, Grabherr M, Jung C, et al., 1997. 57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs. Electron Lett, 33(4):330–331. https://doi.org/10.1049/el:19970193
Jawad AM, Nordin R, Gharghan SK, et al., 2017. Opportunities and challenges for near-field wireless power transfer: a review. Energies, 10(7):1022. https://doi.org/10.3390/en10071022
Jean M, Schulmeister K, Lund DJ, et al., 2021. Laser-induced corneal injury: validation of a computer model to predict thresholds. Biomed Opt Expr, 12(1):336–353. https://doi.org/10.1364/BOE.412102
Jin K, Zhou WY, 2019. Wireless laser power transmission: a review of recent progress. IEEE Trans Power Electron, 34(4):3842–3859. https://doi.org/10.1109/TPEL.2018.2853156
Jin MHC, Pierce JM, Lambiotte JC, et al., 2018. Underwater free-space optical power transfer: an enabling technology for remote underwater intervention. Proc Offshore Technology Conf, Article OTC-28892-MS. https://doi.org/10.4043/28892-MS
Kageyama T, Takaki K, Imai S, et al., 2009. High efficiency 1060 nm VCSELS for low power consumption. Proc IEEE Int Conf on Indium Phosphide & Related Materials, p.391–396. https://doi.org/10.1109/ICIPRM.2009.5012439
Kasazumi K, Kitaoka Y, Mizuuchi K, et al., 2004. A practical laser projector with new illumination optics for reduction of speckle noise. Jpn J Appl Phys, 43(8S):5904–5906. https://doi.org/10.1143/JJAP.43.5904
Kasukawa A, 2012. VCSEL technology for green optical interconnects. IEEE Photon J, 4(2):642–646. https://doi.org/10.1109/JPHOT.2012.2190723
Katsuta Y, Miyamoto T, 2017. Efficiency improvement by serial-connection of VCSEL array for optical wireless power transmission. Proc 22nd Microoptics Conf, p.296–297. https://doi.org/10.23919/MOC.2017.8244603
Katsuta Y, Miyamoto T, 2018. Design and experimental characterization of optical wireless power transmission using GaAs solar cell and series-connected high-power vertical cavity surface emitting laser array. Jpn J Appl Phys, 57(8S2): 08PD01. https://doi.org/10.7567/JJAP.57.08PD01
Katsuta Y, Miyamoto T, 2019a. Characterization and optimization of fly-eye lens system in optical wireless power transmission. Proc 24th Microoptics Conf, p.288–289. https://doi.org/10.23919/MOC46630.2019.8982861
Katsuta Y, Miyamoto T, 2019b. Design, simulation and characterization of fly-eye lens system for optical wireless power transmission. Jpn J Appl Phys, 58(SJ):SJJE02. https://doi.org/10.7567/1347-4065/ab238b
Kaushal H, Kaddoum G, 2017. Applications of lasers for tactical military operations. IEEE Access, 5:20736–20753. https://doi.org/10.1109/ACCESS.2017.2755678
Kawashima N, Takeda K, 2008. Laser energy transmission for a wireless energy supply to robots. In: Balaguer C, Abder-rahim M (Eds.), Robotics and Automation in Construction. InTech Open, p.373–380. https://doi.org/10.5772/6194
Kawashima N, Takeda K, Yabe K, 2007. Application of the laser energy transmission technology to drive a small airplane. Chin Opt Lett, 5(S1):S109–S110.
Kim J, 2020. Three dimensional distributed rendezvous in spherical underwater robots considering power consumption. Ocean Eng, 199:107050. https://doi.org/10.1016/j.oceaneng.2020.107050
Kim SM, Kim SM, 2013a. Wireless optical energy transmission using optical beamforming. Opt Eng, 52(4):043205. https://doi.org/10.1117/1.OE.52A043205
Kim SM, Kim SM, 2013b. Wireless visible light communication technology using optical beamforming. Opt Eng, 52(10): 106101. https://doi.org/10.1117/1.OE.52.10.106101
Kim SM, Park H, 2020. Optimization of optical wireless power transfer using near-infrared laser diodes. Chin Opt Lett, 18(4):042603. https://doi.org/10.3788/COL202018.042603
Kim SM, Rhee DH, 2018. Experimental demonstration of optical wireless power transfer with a DC-to-DC transfer efficiency of 12.1%. Opt Eng, 57(8):086108. https://doi.org/10.1117/1.OE.57.8.086108
Kim SM, Won JS, 2013. Simultaneous reception of visible light communication and optical energy using a solar cell receiver. Proc Int Conf on ICT Convergence, p.896–897. https://doi.org/10.1109/ICTC.2013.6675511
Kinsey GS, Nayak A, Liu MG, et al., 2011. Increasing power and energy in Amonix CPV solar power plants. IEEE J Photovolt, 1(2):213–218. https://doi.org/10.1109/JPHOTOV.2011.2172775
Kline M, Izyumin I, Boser B, et al., 2011. Capacitive power transfer for contactless charging. Proc 26th Annual IEEE Applied Power Electronics Conf and Exposition, p.1398–1404. https://doi.org/10.1109/APEC.2011.5744775
Kong MW, Lin JM, Kang CH, et al., 2019. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells. Opt Expr, 27(24):34542–34551. https://doi.org/10.1364/OE.27.034542
Kong MW, Kang CH, Alkhazragi O, et al., 2020. Survey of energy-autonomous solar cell receivers for satellite-air - ground-ocean optical wireless communication. Progr Quant Electron, 74:100300. https://doi.org/10.1016/j.pquantelec.2020.100300
Kurs A, Karalis A, Moffatt R, et al., 2007. Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834):83–86. https://doi.org/10.1126/science.1143254
Laser Focus World, 2020. VCSEL Advances: VCSEL Power-Conversion Efficiency Improves to 45%. Lasers and Sources. https://www.laserfocusworld.com/lasers-sources/article/14074146/vcsel-power-conversion-efficiency-improves-to-45 [Accessed on Mar. 1, 2021].
Lear KL, Choquette KD, Schneider RP, et al., 1995. Verticalcavity surface-emitting lasers with 50% power conversion efficiency. Proc Conf on Lasers and Electro-Optics 1995, Article CTuB2.
Lee TD, Ebong AU, 2017. A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev, 70:1286–1297. https://doi.org/10.1016/j.rser.2016.12.028
Lee W, Yoon YK, 2021. High efficiency metamaterial-based multi-scale wireless power transfer for smart home applications. Proc IEEE MTT-S Int Microwave Symp, p.62–65. https://doi.org/10.1109/IMS19712.2021.9574860
Li SQ, Mi CC, 2015. Wireless power transfer for electric vehicle applications. IEEE J Emerg Sel Top Power Electron, 3(1): 4–17. https://doi.org/10.1109/JESTPE.2014.2319453
Lim J, Khwaja TS, Ha JY, 2019. Wireless optical power transfer system by spatial wavelength division and distributed laser cavity resonance. Opt Expr, 27(12):A924–A935. https://doi.org/10.1364/OE.27.00A924
Lin JC, 2006. A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation. IEEE Antenn Propag Mag, 48(1): 157–159. https://doi.org/10.1109/MAP.2006.1645601
Lin KB, Xing J, Quan LN, et al., 2018. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562(7726):245–248. https://doi.org/10.1038/s41586-018-0575-3
Liu PQ, Hoffman AJ, Escarra MD, et al., 2010. Highly power-efficient quantum cascade lasers. Nat Photon, 4(2): 95–98. https://doi.org/10.1038/nphoton.2009.262
Liu QW, Wu J, Xia PF, et al., 2016. Charging unplugged: will distributed laser charging for mobile wireless power transfer work? IEEE Veh Technol Mag, 11(4):36–45. https://doi.org/10.1109/MVT.2016.2594944
Liu WH, Feng QB, 2017. Comparison on collimation measurement between white LED and LD. Acta Photon Sin, 46(9):0912004 (in Chinese). https://doi.org/10.3788/gzxb20174609.0912004
Liu Y, Miyamoto T, 2019a. Application of scattering characteristics to module with filters on solar cell for improvement of OWPT equipment appearance. Proc 24th Microoptics Conf, p.208–209. https://doi.org/10.23919/MOC46630.2019.8982896
Liu Y, Miyamoto T, 2019b. Investigation of cover configuration of solar cells that enhances appearance of OWPT. 66th JSAP Spring Meeting.
Lu M, Bagheri M, James AP, et al., 2018. Wireless charging techniques for UAVs: a review, reconceptualization, and extension. IEEE Access, 6:29865–29884. https://doi.org/10.1109/ACCESS.2018.2841376
Lu X, Niyato D, Wang P, et al., 2015. Wireless charger networking for mobile devices: fundamentals, standards, and applications. IEEE Wirel Commun, 22(2): 126–135. https://doi.org/10.1109/MWC.2015.7096295
Lu X, Wang P, Niyato D, et al., 2016. Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun Surv Tutor, 18(2): 1413–1452. https://doi.org/10.1109/COMST.2015.2499783
Luo YZ, Chin KW, 2021. Learning to charge RF-energy harvesting devices in WiFi networks. IEEE Syst J, 15(4): 5516–5525. https://doi.org/10.1109/JSYST.2021.3058109
Luque A, Martí A, Stanley C, 2012. Understanding intermediate-band solar cells. Nat Photon, 6(3): 146–152. https://doi.org/10.1038/nphoton.2012.1
Ma S, Zhang F, Li H, et al., 2019. Simultaneous lightwave information and power transfer in visible light communication systems. IEEE Trans Wirel Commun, 18(12):5818–5830. https://doi.org/10.1109/TWC.2019.2939242
Machura P, Li Q, 2019. A critical review on wireless charging for electric vehicles. Renew Sustain Energy Rev, 104: 209–234. https://doi.org/10.1016/j.rser.2019.01.027
Mantese D, Riewe T, Zhang Q, 2020. Resonant-Beam Based Optical Wireless Power Charging and Data Communication. ECE 4901, University of Connecticut, Connecticut, USA.
Mason R, 2011. Feasibility of Laser Power Transmission to a High-Altitude Unmanned Aerial Vehicle. Rand Project Air Force, Santa Monica, CA, USA.
Matsuura M, Nomoto H, Mamiya H, et al., 2021. Over 40-W electric power and optical data transmission using an optical fiber. IEEE Trans Power Electron, 36(4):4532–4539. https://doi.org/10.1109/TPEL.2020.3027551
Mehendale A, 2017. 9 Wireless Power Transfer Projects. Philips Innovation Services, AE Eindhoven, the Netherlands.
Meller S, 2020. Isotropic Systems and QinetiQ Collaborate on the Holy Grail of Antennas. Isotropic Systems. https://www.isotropicsystems.com/news-3/2020/6/23/uk-tech-cracking-the-code-for-a-new-age-of-connectivity-kthl7 [Accessed on Mar. 5, 2021].
Messier D, 2020. DIU Awards Antenna Contract to Isotropic Systems for Trial Optical Beamforming Technology. http://www.parabolicarc.com/2020/05/18/diu-awards-antenna-contract-to-isotropic-systems-for-trial-optical-beamforming-technology/ [Accessed on Mar. 5, 2021].
Miller M, Grabherr M, King R, et al., 2001. Improved output performance of high-power VCSELs. IEEE J Sel Top Quant Electron, 7(2):210–216. https://doi.org/10.1109/2944.954132
Miyamoto T, 2018. Optical wireless power transmission using VCSELs. Proc SPIE 10682, Semiconductor Lasers and Laser Dynamics VIII, Article 1068204. https://doi.org/10.1117/12.2309436
Moser A, Latta EE, 1992. Arrhenius parameters for the rate process leading to catastrophic damage of AlGaAs-GaAs laser facets. J Appl Phys, 71(10):4848–4853. https://doi.org/10.1063/1.350628
Mostafa TM, Muharam A, Hattori R, 2017. Wireless battery charging system for drones via capacitive power transfer. Proc IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, p.1–6. https://doi.org/10.1109/WoW.2017.7959357
Murakawa K, Kobayashi M, Nakamura O, et al., 1999. A wireless near-infrared energy system for medical implants. IEEE Eng Med Biol Mag, 18(6):70–72. https://doi.org/10.1109/51.805148
Murata A, Nishimura T, Shimizu H, et al., 2020. Effect of high-temperature post-deposition annealing on cesium lead bromide thin films deposited by vacuum evaporation. AIP Adv, 10(4):045031. https://doi.org/10.1063/1.5139553
Naone RL, Hegblom ER, Coldrenz LA, 1999. Tapered-apertures for high-efficiency miniature VCSELs. Proc Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems, p.III17–III18. https://doi.org/10.1109/LEOSST.1999.794694
Nayfeh T, Fast B, Raible D, et al., 2011. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions. NASA/TM-2011-217009, NASA, Colorado Springs, CO, USA.
Nguyen DH, 2020. Optical wireless power transfer for moving objects as a life-support technology. Proc IEEE 2nd Global Conf on Life Sciences and Technologies, p.405–408. https://doi.org/10.1109/LifeTech48969.2020.1570618863
Nguyen DH, Chapman A, 2020. Universal wireless power transfer for energy security, availability and convenience. https://arxiv.org/abs/2008.12512v2
Nguyen DH, Qin CJ, Matsushima T, et al., 2020. Thing-to-thing optical wireless power transfer based on metal halide perovskite transceivers. https://arxiv.org/abs/2009.06163v1
Nugent TJ, Kare JT, 2011. Laser power beaming for defense and security applications. Proc SPIE 8045, Unmanned Systems Technology XIII, Article 804514. https://doi.org/10.1117/12.886169
Oh CW, Cao ZZ, Tangdiongga E, et al., 2016. Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks. Opt Expr, 24(17):19211–19227. https://doi.org/10.1364/OE.24.019211
OMRON, 2022. Safety Standards for Laser Beams. https://www.ia.omron.com/product/cautions/common/laser_safety/index.hml [Accessed on Mar. 5, 2021].
O’Neill MJ, Piszczor MF, Eskenazi MI, et al., 2003. Ultralight stretched Fresnel lens solar concentrator for space power applications. Proc SPIE 5179, Optical Materials and Structures Technologies, p.116–126. https://doi.org/10.1117/12.505801
Optiwave Systems, 2022. Optica Virtual Technology Showcase. https://www.optiwave.com [Accessed on Mar. 5, 2021].
Ortabasi U, Friedman H, 2006. Powersphere: a photovoltaic cavity converter for wireless power transmission using high power lasers. Proc IEEE 4th World Conf on Photovoltaic Energy Conf, p.126–129. https://doi.org/10.1109/WCPEC.2006.279380
OSRAM, 2020. Vixar’s New Multi-junction VCSEL Technology Boasts Extraordinary Efficiency to Improve 3D Sensing. https://www.osram.com/os/press/press-releases/vixars-new-multi-junction-vcsel-technologyboasts-extraordinary-efficiency-to-improve-3d-sensing.jsp [Accessed on Mar. 10, 2021].
Pan GF, Diamantoulakis PD, Ma Z, et al., 2019. Simultaneous lightwave information and power transfer: policies, techniques, and future directions. IEEE Access, 7:28250–28257. https://doi.org/10.1109/ACCESS.2019.2901855
Parello J, Claise B, Schoening B, et al., 2014. Energy Management Framework. RFC 7326.
Park NG, Zhu K, 2020. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat Rev Mater, 5(5):333–350. https://doi.org/10.1038/s41578-019-0176-2
Parks AN, Liu AL, Gollakota S, et al., 2014. Turbocharging ambient backscatter communication. Proc ACM Conf on SIGCOMM, p.619–630. https://doi.org/10.1145/2619239.2626312
Perales M, Yang MH, Wu CL, et al., 2016. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications. Proc SPIE 9733, High-Power Diode Laser Technology and Applications XIV, Article 97330U. https://doi.org/10.1117/12.2213886
Petersen RC, 1997. American national standard for the safe use of optical fiber communications systems utilizing laser diodes and LED sources, ANSI Z136.1-1997. Int Laser Safety Conf, p.104–110. https://doi.org/10.2351/1.5056386
Powering rovers by High Intensity Laser Induction on Planets (PHILIP), 2019. https://nebula.esa.int/content/powering-rovers-high-intensity-laser-induction-planets-philip-0 [Accessed on July 20, 2021].
Putra AWS, Tanizawa M, Maruyama T, 2019. Optical wireless power transmission using Si photovoltaic through air, water, and skin. IEEE Photon Technol Lett, 31(2):157–160. https://doi.org/10.1109/LPT.2018.2887081
Putra AWS, Kato H, Adinanta H, et al., 2020a. Optical wireless power transmission to moving object using Galvano mirror. Proc SPIE 11272, Free-Space Laser Communications XXXII, Article 112721E. https://doi.org/10.1117/12.2547424
Putra AWS, Kato H, Maruyama T, 2020b. Infrared LED marker for target recognition in indoor and outdoor applications of optical wireless power transmission system. Jpn J Appl Phys, 59(SO):SOOD06. https://doi.org/10.35848/1347-4065/ab9489
Raavi S, Arigong B, Zhou RG, et al., 2013. An optical wireless power transfer system for rapid charging. Proc Texas Symp on Wireless and Microwave Circuits and Systems, p. 1–4. https://doi.org/10.1109/WMCaS.2013.6563551
Raible DE, 2008. High intensity laser power beaming for wireless power transmission. ETD Archive 576, Cleveland State University, Cleveland, USA.
Raifuku I, Ishikawa Y, Ito S, et al., 2016. Characteristics of perovskite solar cells under low-illuminance conditions. J Phys Chem C, 120(34):18986–18990. https://doi.org/10.1021/acs.jpcc.6b05298
Rhee DH, Kim SM, 2016. Study on a laser wireless power charge technology. J Korea Inst Electron Commun Sci, 11(12):1219–1224. https://doi.org/10.13067/JKIECS.2016.11.12.1219
Rockwell B, Thomas R, Zimmerman S, 2015. Updates to the ANSI Z136.1 standard. Int Laser Safety Conf, p.75–77. https://doi.org/10.2351/1.5056858
Rühle S, 2016. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol Energy, 130:139–147. https://doi.org/10.1016/j.solener.2016.02.015
Saha A, Iqbal S, Karmaker M, et al., 2017. A wireless optical power system for medical implants using low power near-IR laser. Proc 39th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society, p. 1978–1981. https://doi.org/10.1109/EMBC.2017.8037238
Sahai A, Graham D, 2011. Optical wireless power transmission at long wavelengths. Proc Int Conf on Space Optical Systems and Applications, p.164–170. https://doi.org/10.1109/ICSOS.2011.5783662
Sahli F, Werner J, Kamino BA, et al., 2018. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater, 17(9):820–826. https://doi.org/10.1038/s41563-018-0115-4
Sanders M, Kang JS, 2020. Utilization of polychromatic laser system for satellite power beaming. Proc IEEE Aerospace Conf, p.1–7. https://doi.org/10.1109/AERO47225.2020.9172561
Schubert J, Oliva E, Dimroth F, et al., 2009. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Dev, 56(2):170–175. https://doi.org/10.1109/TED.2008.2010603
Seurin JF, Ghosh CL, Khalfin V, et al., 2008. High-power high-efficiency 2D VCSEL arrays. Proc SPIE 6908, Vertical-Cavity Surface-Emitting Lasers XII, Article 690808. https://doi.org/10.1117/12.774126
Seurin JF, Xu GY, Khalfin V, et al., 2009. Progress in highpower high-efficiency VCSEL arrays. Proc SPIE 7229, Vertical-Cavity Surface-Emitting Lasers XIII, Article 722903. https://doi.org/10.1117/12.808294
Seurin JF, Xu GY, Wang Q, et al., 2010. High-brightness pump sources using 2D VCSEL arrays. Proc SPIE 7615, Vertical-Cavity Surface-Emitting Lasers XIV, Article 76150F. https://doi.org/10.1117/12.842492
Seurin JF, Xu GY, Guo BM, et al., 2011. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications. Proc SPIE 7952, Vertical-Cavity Surface-Emitting Lasers XV, Article 79520G. https://doi.org/10.1117/12.873933
Seurin JF, Khalfin V, Xu GY, et al., 2013. High-power red VCSEL arrays. Proc SPIE 8639, Vertical-Cavity Surface-Emitting Lasers XVII, Article 86390O. https://doi.org/10.1117/12.2004896
Shahjalal M, Hasan MK, Chowdhury MZ, et al., 2019. Smart-phone camera-based optical wireless communication system: requirements and implementation challenges. Electronics, 8(8):913. https://doi.org/10.3390/electronics8080913
Shi DL, Ma ZF, Wu SC, et al., 2015. Laser wireless power transmission system designing and experiment between airships. Proc 2nd National Conf on Information Technology and Computer Science.
Shi DL, Zhang LL, Ma HH, et al., 2016. Research on wireless power transmission system between satellites. Proc IEEE Wireless Power Transfer Conf, p.1–4. https://doi.org/10.1109/WPT.2016.7498851
Shinohara N, 2010. Beam efficiency of wireless power transmission via radio waves from short range to long range. J Electromagn Eng Sci, 10(4):224–230. https://doi.org/10.5515/JKIEES.2010.10.4.224
Silfvast WT, 2004. Laser Fundamentals. Cambridge University Press, Cambridge, UK.
Smagowska B, Pawlaczyk-Łuszczyńska M, 2013. Effects of ultrasonic noise on the human body—a bibliographic review. Int J Occup Saf Ergon, 19(2):195–202. https://doi.org/10.1080/10803548.2013.11076978
Soltani MD, Sarbazi E, Bamiedakis N, et al., 2021. Safety analysis for laser-based optical wireless communications: a tutorial. https://arxiv.org/abs/2102.08707v1
Sprangle P, Hafizi B, Ting A, et al., 2015. High-power lasers for directed-energy applications. Appl Opt, 54(31):F201–F209. https://doi.org/10.1364/AO.54.00F201
Steinsiek F, 2003. Wireless power transmission experiment as an early contribution to planetary exploration missions. Proc 54th Int Astronautical Congress of the Int Astronautical Federation, the Int Academy of Astronautics, and the Int Institute of Space Law. https://doi.org/10.2514/6.IAC-03-R.3.06
Summerer L, Purcell O, 2009. Concepts for wireless energy transmission via laser. Proc Int Conf on Space Optical Systems and Applications.
Sun XC, Zhang LX, Zhang QH, et al., 2019. Si photonics for practical LiDAR solutions. Appl Sci, 9(20):4225. https://doi.org/10.3390/app9204225
Takaki K, 2008. A recorded 62% PCE and low series and thermal resistance VCSEL with a double intra-cavity structure. Proc 21st Int Semiconductor Laser Conf.
Takeda Y, 2020. Light trapping for photovoltaic cells used for optical power transmission. Appl Phys Expr, 13(5):054001. https://doi.org/10.35848/1882-0786/ab8056
Talla V, Kellogg B, Ransford B, et al., 2015. Powering the next billion devices with Wi-Fi. Proc 11th ACM Conf on Emerging Networking Experiments and Technologies, p.4. https://doi.org/10.1145/2716281.2836089
Tang J, Miyamoto T, 2019. Numerical and experimental analysis of power generation characteristics in beam direction control of optical wireless power transmission with mirror. Proc 24th Microoptics Conf, p.164–165. https://doi.org/10.23919/MOC46630.2019.8982774
Tang J, Matsunaga K, Miyamoto T, 2020. Numerical analysis of power generation characteristics in beam irradiation control of indoor OWPT system. Opt Rev, 27(2):170–176. https://doi.org/10.1007/s10043-020-00590-z
Teeneti CR, Truscott TT, Beal DN, et al., 2021. Review of wireless charging systems for autonomous underwater vehicles. IEEE J Ocean Eng, 46(1):68–87. https://doi.org/10.1109/JOE.2019.2953015
Todorov T, Gershon T, Gunawan O, et al., 2014. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Appl Phys Lett, 105(17):173902. https://doi.org/10.1063/1.4899275
Valdivia CE, Wilkins MM, Bouzazi B, et al., 2015. Five-volt vertically-stacked, single-cell GaAs photonic power converter. Proc SPIE 9358, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices IV, Article 93580E. https://doi.org/10.1117/12.2079824
van Giel B, Meuret Y, Thienpont H, 2007. Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources. Opt Eng, 46(4):043001. https://doi.org/10.1117/1.2727313
Wang W, Zhang QQ, Lin H, et al., 2019. Wireless energy transmission channel modeling in resonant beam charging for IoT devices. IEEE Int Things J, 6(2):3976–3986. https://doi.org/10.1109/JIOT.2019.2894008
Wang X, Ruan BD, Lu MY, 2016. Retro-directive beamforming versus retro-reflective beamforming with applications in wireless power transmission. Progr Electromagn Res, 157:79–91. https://doi.org/10.2528/PIER16071707
Weigl B, Grabherr M, Reiner G, et al., 1996. High efficiency selectively oxidised MBE grown vertical-cavity surface-emitting lasers. Electron Lett, 32(6):557–558. https://doi.org/10.1049/el:19960397
Welch DF, 2000. A brief history of high-power semiconductor lasers. IEEE J Sel Top Quant Electron, 6(6):1470–1477. https://doi.org/10.1109/2944.902203
Wilson K, Enoch M, 2000. Optical communications for deep space missions. IEEE Commun Mag, 38(8):134–139. https://doi.org/10.1109/35.860864
Xiong ML, Liu MQ, Zhang QQ, et al., 2019. TDMA in adaptive resonant beam charging for IoT devices. IEEE Int Things J, 6(1):867–877. https://doi.org/10.1109/JIOT.2018.2863232
Xu PY, Zhang WJ, He ZY, 2020. Optical field manipulation for highly efficient wireless laser power transmission. Proc Int Conf on Microwave and Millimeter Wave Technology, p.1–3. https://doi.org/10.1109/ICMMT49418.2020.9386750
Yamaguchi M, 2003. III-V compound multi-junction solar cells: present and future. Sol Energy Mater Sol Cells, 75(1–2): 261–269. https://doi.org/10.1016/S0927-0248(02)00168-X
Yang X, 2016. Electrical Parasitic Bandwidth Limitations of Oxide-Free Lithographic Vertical-Cavity Surface-Emitting Lasers. PhD Thesis, University of Central Florida, Florida, USA.
Yedavalli PS, Riihonen T, Wang XD, et al., 2017. Far-field RF wireless power transfer with blind adaptive beamforming for Internet of Things devices. IEEE Access, 5:1743–1752. https://doi.org/10.1109/ACCESS.2017.2666299
Zeng Y, Zhang R, 2015. Optimized training design for wireless energy transfer. IEEE Trans Commun, 63(2):536–550. https://doi.org/10.1109/TCOMM.2014.2385077
Zhang QQ, Shi XJ, Liu QW, et al., 2017. Adaptive distributed laser charging for efficient wireless power transfer. Proc IEEE 86th Vehicular Technology Conf, p. 1–5. https://doi.org/10.1109/VTCFall.2017.8288143
Zhang QQ, Fang W, Liu QW, et al., 2018. Distributed laser charging: a wireless power transfer approach. IEEE Int Things J, 5(5):3853–3864. https://doi.org/10.1109/JIOT.2018.2851070
Zhang QQ, Fang W, Xiong ML, et al., 2019a. Adaptive resonant beam charging for intelligent wireless power transfer. IEEE Int Things J, 6(1):1160–1172. https://doi.org/10.1109/JIOT.2018.2867457
Zhang QQ, Liu MQ, Lin X, et al., 2019b. Optimal resonant beam charging for electronic vehicles in Internet of Intelligent Vehicles. IEEE Int Things J, 6(1):6–14. https://doi.org/10.1109/JIOT.2018.2872431
Zhang R, Ho CK, 2013. MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wirel Commun, 12(5):1989–2001. https://doi.org/10.1109/TWC.2013.031813.120224
Zhang R, Maunder RG, Hanzo L, 2015a. Wireless information and power transfer: from scientific hypothesis to engineering practice. IEEE Commun Mag, 53(8):99–105. https://doi.org/10.1109/MCOM.2015.7180515
Zhang R, Wang JH, Wang ZC, et al., 2015b. Visible light communications in heterogeneous networks: paving the way for user-centric design. IEEE Wirel Commun, 22(2):8–16. https://doi.org/10.1109/MWC.2015.7096279
Zhou DL, Seurin JF, Xu GY, et al., 2014. Progress on vertical-cavity surface-emitting laser arrays for infrared illumination applications. Proc SPIE 9001, Vertical-Cavity Surface-Emitting Lasers XVIII, Article 90010E. https://doi.org/10.1117/12.2040429
Zhou DL, Seurin JF, Xu GY, et al., 2015. Progress on highpower high-brightness VCSELs and applications. Proc SPIE 9381, Vertical-Cavity Surface-Emitting Lasers XIX, Article 93810B. https://doi.org/10.1117/12.2080145
Zhou YH, Miyamoto T, 2019a. 200 mW-class LED-based optical wireless power transmission for compact IoT. Jpn J Appl Phys, 58(SJ):SJJC04. https://doi.org/10.7567/1347-4065/ab24b4
Zhou YH, Miyamoto T, 2019b. Optimized LED-based optical wireless power transmission system configuration for compact IoT. Proc 24th Microoptics Conf, p.154–155. https://doi.org/10.23919/MOC46630.2019.8982798
Zhou YH, Miyamoto T, 2021. 400 mW class high output power from LED-array optical wireless power transmission system for compact IoT. IEICE Electron Expr, 18(2): 20200405. https://doi.org/10.1587/elex.17.20200405
Author information
Authors and Affiliations
Contributions
Syed Agha Hassnain MOHSAN drafted the paper. Haoze QIAN and Hussain AMJAD helped organize the paper. Syed Agha Hassnain MOHSAN and Haoze QIAN revised and finalized the paper.
Corresponding author
Ethics declarations
Syed Agha Hassnain MOHSAN, Haoze QIAN, and Hussain AMJAD declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Mohsan, S.A.H., Qian, H. & Amjad, H. A comprehensive review of optical wireless power transfer technology. Front Inform Technol Electron Eng 24, 767–800 (2023). https://doi.org/10.1631/FITEE.2100443
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2100443
Key words
- Wireless power transmission
- Optical wireless power transfer
- Distributed laser charging
- Laser diode
- Solar cell