Abstract
A low power high performance Delta-Sigma modulator for portable measurement applications is presented. To reduce power consumption while maintaining high performance, a fully feedforward architecture with a comprehensive system-level design is implemented. As a key building block, a novel power efficient current mirror operational transconductance amplifier (OTA) with a fast-settling less-error switched-capacitor common-mode feedback (SC CMFB) circuit is introduced, and the effects of both gain nonlinearity and 1/f noise of OTA are discussed. A new method to determine the voltage gain of an OTA is also proposed. The bottom terminal parasitic effect of poly-insulator-poly (PIP) capacitors is considered. About an extra 20% of capacitance is added to the total capacitance load. A power and area efficient resonator is adopted to realize a coefficient of 1/90 for 50% power and 75% area reduction compared with conventional designs. The chip is implemented in a low cost 0.35 μm complementary metal oxide semiconductor (CMOS) process. The total power consumption is 20 μW with a 1.5 V supply, and the measured dynamic range (DR) is 95 dB over a 1 kHz bandwidth. Experimental results show that a high figure-of-merit (FOM) is achieved for the designed modulator in comparison with those from the literature.
Similar content being viewed by others
References
Chae, Y., Han, G., 2007. A Low Power Sigma-Delta Modulator Using Class-C Inverter. IEEE Symp. on VLSI Circuits, p.240–241. [doi:10.1109/VLSIC.2007.4342734]
Chae, Y., Han, G., 2009. Low voltage, low power, inverter-based switched-capacitor Delta-Sigma modulator. IEEE J. Sol.-State Circ., 44(2):458–472. [doi:10.1109/JSSC.2008.2010973]
Choksi, O., Carley, L.R., 2003. Analysis of switched-capacitor common-mode feedback circuit. IEEE Trans. Circ. Syst. II, 50(12):906–917. [doi:10.1109/TCSII.2003.820253]
Enz, C.C., Temes, G.C., 1996. Circuit techniques for reducing the effects of opamp imperfections: auto-zeroing, correlated double sampling, and Chopper stabilization. Proc. IEEE, 84(11):1584–1614. [doi:10.1109/5.542410]
Fiorenza, J.K., Sepke, T., Holloway, P., Sodini, C.G., Lee, H.S., 2006. Comparator-based switched-capacitor circuits for scaled CMOS technologies. IEEE J. Sol.-State Circ., 41(12):2658–2668. [doi:10.1109/JSSC.2006.884330]
Gharbiya, A., Johns, D.A., 2006. On the implementation of input-feedforward Delta-Sigma modulators. IEEE Trans. Circ. Syst. II, 53(6):453–457. [doi:10.1109/TCSII.2006.873829]
Goes, J., Vaz, B., Monteiro, R., Paulino, N., 2006. A 0.9-V ΔΣ Modulator with 80-dB SNDR and 83-dB DR Using a Single-Phase Technique. IEEE Int. Solid-State Circuits Conf., p.191–200. [doi:10.1109/ISSCC.2006.1696048]
Nagaraj, K., 1989. A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits. IEEE Trans. Circ. Syst., 36(9):1210–1216. [doi:10.1109/31.34666]
Ou, W., Wu, X.B., 2008. High-consistency behavior modeling of switched-capacitor Sigma-Delta modulator in SIMULINK. J. Semicond., 29(11):2209–2217.
Park, Y., Nam, K.Y., Su, D.K., Vleugels, K., Wooley, B.A., 2009. A 0.7-V 870-μW digital-audio CMOS Sigma-Delta modulator. IEEE J. Sol.-State Circ., 44(4):1078–1087. [doi:10.1109/JSSC.2009.2014708]
Peluso, V., Steyaert, M.S.J., Sansen, W., 1997. A 1.5-V-100-μW ΔΣ modulator with 12-b dynamic range using the switched-opamp technique. IEEE J. Sol.-State Circ., 32(7):943–951. [doi:10.1109/4.597284]
Pun, K.P., Chatterjee, S., Kinget, P., 2006. A 0.5-V 74-dB SNDR 25-kHz CT ΔΣ Modulator with Return-to-Open DAC. IEEE Int. Solid-State Circuits Conf., p.181–190. [doi:10.1109/ISSCC.2006.1696047]
Rabii, S., Wooley, B.A., 1997. A 1.8-V digital-audio Sigma-Delta modulator in 0.8-μm CMOS. IEEE J. Sol.-State Circ., 32(6):783–796. [doi:10.1109/4.585245]
Rabii, S., Wooley, B.A., 1999. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators. Kluwer Academic Publishers, Norwell, USA, p.59–60.
Rajput, S.S., Jamuar, S.S., 2002. Low voltage analog circuit design techniques. IEEE Circ. Syst. Mag., 2(1):24–42. [doi:10.1109/MCAS.2002.999703]
Roh, J., Byun, S., Choi, Y., Roh, H., Kim, Y.G., Kee, J.K., 2008. A 0.9-V 60-μW 1-bit fourth-order Delta-Sigma modulator with 83-dB dynamic range. IEEE J. Sol.-State Circ., 43(2):361–370. [doi:10.1109/JSSC.2007.914266]
Sauerbrey, J., Tille, T., Schmitt-Landsiedel, D., Thewes, R., 2002. A 0.7V MOSFET-Only Switched-Opamp ΣΔ Modulator. IEEE Int. Solid-State Circuits Conf. [doi:10.1109/ISSCC.2002.993056]
Schreier, R., Temes, G.C., 2004. Understanding Delta-Sigma Data Converters. Wiley-IEEE Press, New York, p.112–113.
Silva, J., Moon, U., Steensgaard, J., Temes, G.C., 2001. Wideband low-distortion Delta-Sigma ADC topology. Electron. Lett., 37(12):737–738. [doi:10.1049/el:20010542]
Xu, J., Zhao, M., Wu, X., Yan, X., 2007. Low Voltage Low Power Current Mirror OTA for Sigma-Delta Modulator. IEEE Conf. on Electron Devices and Solid-State Circuits, p.875–879. [doi:10.1109/EDSSC.2007.4450265]
Yang, Y., Chokhawala, A., Alexander, M., Melanson, J., Hester, D., 2003. A 114-dB 68-mW Chopper-stabilized stereo multibit audio ADC in 5.62 mm2. IEEE J. Sol.-State Circ., 38(12):2061–2068. [doi:10.1109/JSSC.2003.819164]
Yao, L.B., Michiel, S.J., Steyaert, W.S., 2004. A 1-V 140-μW 88-dB audio Sigma-Delta modulator in 90-nm CMOS. IEEE J. Sol.-State Circ., 39(11):1809–1818. [doi:10.1109/JSSC.2004.835825]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (No. 60906012) and the Analog Devices Inc. (ADI)
Rights and permissions
About this article
Cite this article
Xu, J., Wu, Xb., Zhao, Ml. et al. A 20 μW 95 dB dynamic range 4th-order Delta-Sigma modulator with novel power efficient operational transconductance amplifier and resonator. J. Zhejiang Univ. - Sci. C 12, 486–498 (2011). https://doi.org/10.1631/jzus.C1000239
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C1000239