Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic tuning of digitally-controllable positive-feedback OTAs in continuous-time sigma–delta modulators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a technique suitable for on-chip tuning of digitally-tunable positive-feedback operational transconductor amplifiers in a continuous-time sigma–delta modulator (CT-SDM) with active-RC integrator stages. The work we present relies on phase shift and offset measurement of individual active-RC integrator stages output using comparators to estimate output conductance, DC-gain, and common mode level of the differential output signals. The tuning methodology aims to tune the integrator stages to achieve sufficient DC-gain as required by the SDM. We present experimental results to confirm the correlation of our integrator phase and output offset detection technique with the operational transconductance amplifier (OTA) DC gain. We employ this technique in a tuning process of two digitally-tunable OTA chips implemented in complementary metal-oxide semiconductor 180 nm process configured in a second-order CT-SDM circuit with discrete components. The tuning algorithm results in a measured signal-to-noise and distortion ratio (SNDR) of 46.97 dB, which is close to the maximum SNDR of 47.83 dB achievable across a subset of the digitally-tunable OTA code space. High-speed operation of the CT-SDM and tuning circuitry has been verified through circuit simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Murmann, B., Nikaeen, P., Connelly, D. J., & Dutton, R. W. (2006). Impact of scaling on analog performance and associated modeling needs. IEEE Transactions on Electron Devices, 53(9), 2160–2167. doi:10.1109/TED.2006.880372.

    Article  Google Scholar 

  2. Chiu, Y., Nikoli, B., & Gray, P. (2005). Scaling of analog-to-digital converters into ultra-deep-submicron CMOS. In Proceedings of the IEEE 2005 custom integrated circuits conference 2005 (pp. 368–375). IEEE. doi:10.1109/CICC.2005.1568684.

  3. Pude, M., Mukund, P., Singh, P., Paradis, K., & Burleson, J. (2010). Amplifier gain enhancement with positive feedback. In 2010 53rd IEEE international Midwest symposium on circuits and systems (pp. 981–984). IEEE. doi:10.1109/MWSCAS.2010.5548800.

  4. Ragab, K., Gharpurey, R., & Orshansky, M. (2012). Embracing local variability to enable a robust high-gain positive-feedback amplifier: Design methodology and implementation. In Thirteenth international symposium on quality electronic design (pp. 143–150). IEEE. doi:10.1109/ISQED.2012.6187487.

  5. Laber, C., & Gray, P. (1988). A positive-feedback transconductance amplifier with applications to high-frequency, high-Q CMOS switched-capacitor filters. IEEE Journal of Solid-State Circuits, 23(6), 1370–1378. doi:10.1109/4.90033.

    Article  Google Scholar 

  6. Schlarmann, M., Malik, S., & Geiger, R. (2002). Positive feedback gain-enhancement techniques for amplifier design. In 2002 IEEE international symposium on circuits and systems proceedings (cat. no. 02CH37353) (Vol. 2, pp. II-37–II-40). IEEE. doi:10.1109/ISCAS.2002.1010917.

  7. Nauta, B. (1992). A CMOS transconductance-C filter technique for very high frequencies. IEEE Journal of Solid-State Circuits, 27(2), 142–153. doi:10.1109/4.127337.

    Article  Google Scholar 

  8. Iberzanov, A., Nicholson, A., Jenkins, J., Lehman, T., & Hamilton, T. J. (2014). Calibration of the Nauta structure differential OTA. In 2014 IEEE Asia Pacific conference on circuits and systems.

  9. Chang, S. J. J., Lin, Y. Z. Z., & Liu, Y. T. T. (2008). A digitally calibrated CMOS transconductor with a 100-MHz bandwidth and 75-dB SFDR. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(11), 1089–1093. doi:10.1109/TCSII.2008.2001987.

    Article  Google Scholar 

  10. Garcia, J., & Rusu, A. (2010). Built-in self calibration for process variation in single-loop continuous-time sigma–delta modulators. 2010 17th IEEE International Conference on Electronics, Circuits and Systems, 2, 1136–1139. doi:10.1109/ICECS.2010.5724717.

    Article  Google Scholar 

  11. Jiang, X., Ramachandran, N. P., Kang, D. W., Chen, C. K., Rutherford, M., Cong, Y., & Chang, D. (2014). Digitally-assisted analog and analog-assisted digital design techniques for a 28 nm mobile system-on-chip. In ESSCIRC 2014: 40th European solid state circuits conference (pp. 475–478). IEEE. doi:10.1109/ESSCIRC.2014.6942125.

  12. Barabino, N., & Silveira, F. (2015). Digitally Assisted CMOS RF Detectors With Self-Calibration for Variability Compensation. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1676–1682. doi:10.1109/TMTT.2015.2417172.

    Article  Google Scholar 

  13. Pavan, S., & Tsividis, Y. (2000). High frequency continuous time filters in digital CMOS processes. Dordrecht: Springer.

    Google Scholar 

  14. Otin, A., Celma, S., Aldea, C., & Sanz, M. T. (2007). A hybrid fine/coarse auto-tuning scheme for digitally programmable VHF Gm-C filters. In 2007 50th Midwest symposium on circuits and systems (pp. 522–525). IEEE. doi:10.1109/MWSCAS.2007.4488638.

  15. Cunha, M., Filho, S., Schneider, M., & Dalcastagne, A. (1997). Automatic tuning of MOSFET-C filters using digitally programmable current attenuators. In 1997 IEEE international symposium on circuits and systems (Vol. 1, pp. 329–332). IEEE. doi:10.1109/ISCAS.1997.608728.

  16. Nicholson, A., Jenkins, J., van Schaik, A., Hamilton, T. J., & Lehmann, T. (2014). A digital to transconductance converter for Nauta structure op-amps in 65 nm CMOS. In 2014 IEEE 57th international Midwest symposium on circuits and systems (pp. 173–176). IEEE. doi:10.1109/MWSCAS.2014.6908380.

  17. Nicholson, A., Jenkins, J., Irfansyah, A. N., Politi, N., van Schaik, A., Hamilton, T. J., & Lehmann, T. (2013). A 0.3 mm\(^{2}\) 10-b 100 MS/s pipelined ADC using Nauta structure op-amps in 180 nm CMOS. In 2013 IEEE international symposium on circuits and systems (pp. 1833–1836). IEEE. doi:10.1109/ISCAS.2013.6572222.

  18. Irfansyah, A. N., Pham, L., Nicholson, A., Lehmann, T., Jenkins, J., & Hamilton, T. J. (2014). Nauta OTA in a second-order continuous-time delta–sigma modulator. In 2014 IEEE 57th international Midwest symposium on circuits and systems (pp. 849–852). IEEE. doi:10.1109/MWSCAS.2014.6908548.

  19. Irfansyah, A. N., Nicholson, A., Jenkins, J., Hamilton, T. J., & Lehmann, T. (2015). Subthreshold operation of Nauta’s operational transconductance amplifier. In 2015 IEEE 13th international new circuits and systems conference (pp. 1–4). IEEE. doi:10.1109/NEWCAS.2015.7182065.

  20. Aluthwala, P., Weste, N., Adams, A., Lehmann, T., & Parameswaran, S. (2014). A simple digital architecture for a harmonic-cancelling sine-wave synthesizer. In 2014 IEEE international symposium on circuits and systems (pp. 2113–2116). IEEE. doi:10.1109/ISCAS.2014.6865584.

  21. Nauta, B. (1993). Analog CMOS filters for very high frequencies. Springer. doi:10.1007/978-1-4615-3580-5.

  22. Otin, A., Celma, S., & Aldea, C. (2004). Pseudo-differential integrator for UHF applications in digital CMOS technologies. In 2004 47th Midwest symposium on circuits and systems 2004, MWSCAS ’04 (Vol. 1, pp. 133–136). doi:10.1109/MWSCAS.2004.1353915.

  23. Calvo, B., Sanz, M., Celma, S., & Martinez, P. (2003). A CMOS digitally tunable transconductor for video frequency operation [programmable filter applications]. In Proceedings of the 2003 international symposium on circuits and systems 2003, ISCAS ’03 (Vol. 1, pp. 557–560). doi:10.1109/ISCAS.2003.1205624.

  24. Crombez, P., Craninckx, J., & Steyaert, M. (2007). A 100 kHz 20 MHz reconfigurable Nauta Gm-C biquad low-pass filter in 0.13 m CMOS. In 2007 IEEE Asian solid-state circuits conference (pp. 444–447). IEEE. doi:10.1109/ASSCC.2007.4425726.

  25. Ortmanns, M., Gerfers, F., & Manoli, Y. (2004). Compensation of finite gain-bandwidth induced errors in continuous-time sigma delta modulators. IEEE Transactions on Circuits and Systems, I: Regular Papers, 51(6), 1088–1099. doi:10.1109/TCSI.2004.829234.

  26. Schreier, R. & Temes, G. (2005). Understanding delta–sigma data converters, 1st edn. Piscataway, NJ: Wiley-IEEE Press.

    Google Scholar 

  27. Nicholson, A. P., Iberzanov, A., Jenkins, J., Hamilton, T. J., & Lehmann, T. (2016). A statistical design approach for a digitally programmable mismatch-tolerant high-speed Nauta structure differential OTA in 65-nm CMOS. IEEE Transactions on Very Large Scale Integration Systems, PP(99), 1–12. doi:10.1109/TVLSI.2016.2526048.

  28. Zeller, S., Muenker, C., Weigel, R., & Ussmueller, U. (2014). A 0.039 mm\(^{2}\) inverter-based 1.82 mW 68.6 dB-SNDR 10 MHz-BW CT-\(\Sigma \Delta\)-ADC in 65 nm CMOS using power- and area-efficient design techniques. IEEE Journal of Solid-State Circuits, 49(7), 1548–1560. doi:10.1109/JSSC.2014.2321063.

    Article  Google Scholar 

  29. Jansen, R. J. E., Haanstra, J., & Sillars, D. (2013). Complementary constant-Gm biasing of Nauta-transconductors in low-power Gm-C filters to \({\pm }\)2 % accuracy over temperature. IEEE Journal of Solid-State Circuits, 48(7), 1585–1594. doi:10.1109/JSSC.2013.2253233.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council (ARC) Linkage Grant LP100200275 and Perceptia Devices Australia Pty. Ltd. The PhD Program for the first author has been supported by the Indonesian Government Directorate of Higher Education scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astria Nur Irfansyah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfansyah, A.N., Nicholson, A.P., Iberzanov, A. et al. Automatic tuning of digitally-controllable positive-feedback OTAs in continuous-time sigma–delta modulators. Analog Integr Circ Sig Process 89, 469–483 (2016). https://doi.org/10.1007/s10470-016-0820-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0820-3

Keywords