Journal of Modern Foreign Psychology
2020. Vol. 9, no. 3, 59–68
doi:10.17759/jmfp.2020090305
ISSN: 2304-4977 (online)
Automatic engagement detection in the education: critical review
Abstract
General Information
Keywords: education; engagement; automatic affect detection; automatic engagement detection; affect detection by video; engagement detection by video
Journal rubric: Educational Psychology and Pedagogical Psychology
Article type: scientific article
DOI: https://doi.org/10.17759/jmfp.2020090305
For citation: Kasatkina D.A., Kravchenko A.M., Kupriyanov R.B., Nekhorosheva E.V. Automatic engagement detection in the education: critical review [Elektronnyi resurs]. Sovremennaia zarubezhnaia psikhologiia = Journal of Modern Foreign Psychology, 2020. Vol. 9, no. 3, pp. 59–68. DOI: 10.17759/jmfp.2020090305. (In Russ., аbstr. in Engl.)
References
- Il'in E.P. Psikhofiziologiya sostoyanii cheloveka [Psychophysiology of human states]. St. Petersburg: Piter, 2005. 412 p.(In Russ.).
- Kupriyanov R.B. Primenenie tekhnologii komp'yuternogo zreniya dlya avtomaticheskogo sbora dannykh ob emotsiyakh obuchayushchikhsya vo vremya gruppovoi raboty [Application of computer vision technologies for automatic collection of data about students' emotions during group work]. Informatika i obrazovanie [Informatics and Education],2020. Vol. 314, no. 5,pp. 56–63. DOI:10.32517/0234-0453-2020-35-5-56-63(In Russ.).
- Altuwairqi K. et al. A new emotion–based affective model to detect student’s engagement. Journal of King Saud University – Computer and Information Sciences, 2019. In Press. DOI:10.1016/j.jksuci.2018.12.008
- Zeng Z. et al. A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009. Vol. 31, no. 1, pp. 39–58. DOI:10.1109/TPAMI.2008.52
- Craig S. et al. Affect and learning: An exploratory look into the role of affect in learning with AutoTutor. Journal of Educational Media, 2004. Vol. 29, no. 3, pp. 241–250. DOI:10.1080/1358165042000283101
- Ainley M. Connecting with learning: Motivation, affect and cognition in interest processes. Educational Psychology Review, 2006. Vol. 18, pp. 391–405. DOI:10.1007/s10648-006-9033-0
- Bosch N. et al. Automatic detection of learning-centered affective states in the wild. In Proceedings of the 20th International Conference on Intelligent User Interfaces. New York: Association for Computing Machinery, 2015, pp. 379–388. DOI:10.1145/2678025.2701397
- Baker R.S.J., Rodrigo M.M.T., Xolocotzin U.E. The Dynamics of Affective Transitions in Simulation Problem-Solving Environments. International Conference on Affective Computing and Intelligent Interaction. Affective Computing and Intelligent Interaction. Lisbon: ACII, 2007, pp. 666–677. DOI:10.1007/978-3-540-74889-2_58
- Beck J. Engagement tracing: using response times to model student disengagement. In Chee-Kit Looi (ed.), Artificial Intelligence in Education: Supporting Learning Through Intelligent and Socially Informed Technology. Amsterdam: IOS Press, 2005, pp. 88–95.
- Bosch N. Detecting student engagement: Human versus machine Association for Computing Machinery. In Vassileva J. et al. (eds.), UMAP '16: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. New York: Association for Computing Machinery, 2016, pp. 317–320. DOI:10.1145/2930238.2930371
- Bosch N., Chen Y., D’Mello S. It’s Written on Your Face: Detecting Affective States from Facial Expressions while Learning Computer Programming. Intelligent Tutoring Systems. Lecture Notes in Computer Science, 2014. Vol. 8474, pp. 39–44. DOI:10.1007/978-3-319-07221-0_5
- Calvo M.G., Nummenmaa L. Processing of Unattended Emotional Visual Scenes. Journal of Experimental Psychology: General, 2007. Vol. 136, no. 3, pp. 347–369. DOI:10.1037/0096-3445.136.3.347
- Calvo R.A., D’Mello S. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 2010. Vol. 1, no. 1, pp. 18–37. DOI:10.1109/T-AFFC.2010.1
- Christenson S.L., Wylie C., Reschly A.L. Handbook of Research on Student Engagement. New York: Springer, 2012. 840 p.DOI:10.1007/978-1-4614-2018-7
- Conati C., MacLaren H. Empirically building and evaluating a probabilistic model of user affect.User Modeling and User-Adapted Interaction, 2009. Vol. 19, pp. 267–303. DOI:10.1007/s11257-009-9062-8
- D’Mello S. A selective meta-analysis on the relative incidence of discrete affective states during learning with technology. Journal of Educational Psychology, 2013. Vol. 105, no. 4, pp. 1082–1099. DOI:10.1037/a0032674
- D’Mello S., Graesser A. Dynamics of affective states during complex learning. Learning and Instruction, 2012. Vol. 22, no. 2, pp. 145–157. DOI:10.1016/j.learninstruc.2011.10.001
- Dixson M.D. Measuring student engagement in the online course: The online student engagement scale (OSE).Journal of Asynchronous Learning Network, 2015. Vol. 4, no. 19. DOI:10.24059/olj.v19i4.561
- Ekman P., Freisen W.V., Ancoli S. Facial signs of emotional experience. Journal of Personality and Social Psychology, 1980. Vol. 39, no. 6, pp. 1125–1134. DOI:10.1037/h0077722
- Ekman P., Friesen W. V. Facial Action Coding System: A Technique for the Measurement of Facial Movement. California: Consulting Psychologists Press, 1978. 197 p.
- Arroyo I. et al. Emotion Sensors Go to School. In Dimitrova V. et al. (eds.), Artificial Intelligence in Education. Amsterdam: IOS Press, 2009, pp. 17–24. (Frontiers in Artificial Intelligence and Applications).
- Bergdahl N. et al. Engagement, disengagement and performance when learning with technologies in upper secondary school [Elektronnyi resurs]. Computers & Education, 2020. Vol. 149, Article number 103783. URL: https://www.sciencedirect.com/science/article/abs/pii/S0360131519303331 (Accessed 18.08.2020).
- Fredricks J.A., Blumenfeld P.C., Paris A.H. School Engagement: Potential of the Concept, State of the Evidence. Review of Educational Research, 2004. Vol. 74, no. 1, pp. 59–109. DOI:10.3102/00346543074001059
- Frenzel A.C., Pekrun R., Goetz T. Perceived learning environment and students’ emotional experiences: A multilevel analysis of mathematics classrooms. Learning and Instruction, 2007. Vol. 17, no. 5, pp. 478–493. DOI:10.1016/j.learninstruc.2007.09.001
- Frijda N.H. Emotion, cognitive structure, and action tendency. Cognition and Emotion, 1987. Vol. 1, no. 2, pp. 115–143. DOI:10.1080/02699938708408043
- Kupriyanov R. et al. Intelligent tool for developing student’s social skills [Elektronnyi resurs]. Proceedings of Edulearn20 Conference: 6th-7th July 2020. Mallorca, 2020, pp. 2408–2413. URL: http://132.66.16.6/~ilia1/744.pdf (Accessed 18.08.2020).
- Kapoor A., Burleson W., Picard R.W. Automatic prediction of frustration. International Journal of Human Computer Studies, 2007. Vol. 65, no. 8, pp. 724–736. DOI:10.1016/j.ijhcs.2007.02.003
- Marks H.M. Student Engagement in Instructional Activity: Patterns in the Elementary, Middle, and High School Years. American Educational Research Journal, 2000. Vol. 37, no. 1, pp. 153–184. DOI:10.3102/00028312037001153
- Matthews G., Davies D.R. Individual differences in energetic arousal and sustained attention: A dual-task study. Personality and Individual Differences, 2001. Vol. 31, no. 4, pp. 575–589. DOI:10.1016/S0191-8869(00)00162-8
- Appleton J.J. et al. Measuring cognitive and psychological engagement: Validation of the Student Engagement Instrument. Journal of School Psychology, 2006. Vol. 44, no. 5, pp. 427–445. DOI:10.1016/j.jsp.2006.04.002
- Mota S., Picard R. Automated Posture Analysis for detecting Learner’s Interest Level [Elektronnyi resurs].Conference on Computer Vision and Pattern Recognition Workshop. Vol. 5. Madison: IEEE, 2003., pp. 49. URL: https://affect.media.mit.edu/pdfs/03.mota-picard.pdf (Accessed 18.08.2020).
- Newmann F., Wehlage G., Lamborn S.D. The significance and sources of student engagement. In Newman F. Student Engagement and Achievement in American Secondary School. New York: Teachers College Press, 1992, pp. 11–39. URL: https://files.eric.ed.gov/fulltext/ED371047.pdf#page=16 (Accessed 18.08.2020).
- Pantic M., Rothkrantz L. Toward an affect-sensitive multimodal human-computer interaction. Proceedings of the Institute of Electrical and Electronics Engineers, 2003, pp. 1370–1390. DOI:10.1109/JPROC.2003.817122
- Pontual Falcão T. et al. Participatory methodologies to promote student engagement in the development of educational digital games. Computers and Education, 2018. Vol. 116, pp.161–175. DOI:10.1016/j.compedu.2017.09.006
- Matthews G. et al. Profiling task stress with the dundee state questionnaire. In Cavalcanti L., Azevedo S. (eds.), Psychology of Stress. New York: Nova Science Publishers, 2013, pp. 49–91.
- Roseman I. Cognitive determinants of emotion: A structural theory. Review of Personality & Social Psychology, 1984. Vol. 5, pp. 11–36.
- Russell J.A. Core Affect and the Psychological Construction of Emotion. Psychological Review, 2003. Vol. 110, no. 1, pp. 145–172. DOI:10.1037/0033-295X.110.1.145
- Salovey P. Introduction: Emotion and Social Processes. In Davidson R.J., Scherer K.R., Goldsmith H.H. (eds.),Series in affective science. Handbook of affective sciences. Oxford: Oxford University Press, 2003, pp. 3–7.
- Scherer K.R. Facets of emotion: recent research. London: Psychology Press, 1988. 280 p.
- Schutz P., Pekrun R. Emotion in Education. London: Academic Press, 2007. 368 p.
- Whitehill J. et al. The faces of engagement: Automatic recognition of student engagement from facial expressions.IEEE Transactions on Affective Computing, 2014. Vol. 5, no. 1, pp. 86–98. DOI:10.1109/TAFFC.2014.2316163
- Xie K., Heddy B.C., Greene B.A. Affordances of using mobile technology to support experience-sampling method in examining college students’ engagement.Computers and Education, 2019. Vol. 128, pp. 183–198. DOI:10.1016/j.compedu.2018.09.020
Information About the Authors
Metrics
Views
Total: 694
Previous month: 36
Current month: 20
Downloads
Total: 551
Previous month: 8
Current month: 10