@inproceedings{weller-di-marco-fraser-2020-modeling,
title = "Modeling Word Formation in {E}nglish{--}{G}erman Neural Machine Translation",
author = "Weller-Di Marco, Marion and
Fraser, Alexander",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.389/",
doi = "10.18653/v1/2020.acl-main.389",
pages = "4227--4232",
abstract = "This paper studies strategies to model word formation in NMT using rich linguistic information, namely a word segmentation approach that goes beyond splitting into substrings by considering fusional morphology. Our linguistically sound segmentation is combined with a method for target-side inflection to accommodate modeling word formation. The best system variants employ source-side morphological analysis and model complex target-side words, improving over a standard system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="weller-di-marco-fraser-2020-modeling">
<titleInfo>
<title>Modeling Word Formation in English–German Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marion</namePart>
<namePart type="family">Weller-Di Marco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper studies strategies to model word formation in NMT using rich linguistic information, namely a word segmentation approach that goes beyond splitting into substrings by considering fusional morphology. Our linguistically sound segmentation is combined with a method for target-side inflection to accommodate modeling word formation. The best system variants employ source-side morphological analysis and model complex target-side words, improving over a standard system.</abstract>
<identifier type="citekey">weller-di-marco-fraser-2020-modeling</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.389</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.389/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>4227</start>
<end>4232</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Word Formation in English–German Neural Machine Translation
%A Weller-Di Marco, Marion
%A Fraser, Alexander
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F weller-di-marco-fraser-2020-modeling
%X This paper studies strategies to model word formation in NMT using rich linguistic information, namely a word segmentation approach that goes beyond splitting into substrings by considering fusional morphology. Our linguistically sound segmentation is combined with a method for target-side inflection to accommodate modeling word formation. The best system variants employ source-side morphological analysis and model complex target-side words, improving over a standard system.
%R 10.18653/v1/2020.acl-main.389
%U https://aclanthology.org/2020.acl-main.389/
%U https://doi.org/10.18653/v1/2020.acl-main.389
%P 4227-4232
Markdown (Informal)
[Modeling Word Formation in English–German Neural Machine Translation](https://aclanthology.org/2020.acl-main.389/) (Weller-Di Marco & Fraser, ACL 2020)
- Modeling Word Formation in English–German Neural Machine Translation (Weller-Di Marco & Fraser, ACL 2020)
ACL
- Marion Weller-Di Marco and Alexander Fraser. 2020. Modeling Word Formation in English–German Neural Machine Translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4227–4232, Online. Association for Computational Linguistics.