@inproceedings{leung-etal-2020-investigating,
title = "Investigating {C}ross-{L}inguistic {A}djective {O}rdering {T}endencies with a {L}atent-{V}ariable {M}odel",
author = "Leung, Jun Yen and
Emerson, Guy and
Cotterell, Ryan",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.329/",
doi = "10.18653/v1/2020.emnlp-main.329",
pages = "4016--4028",
abstract = "Across languages, multiple consecutive adjectives modifying a noun (e.g. {\textquotedblleft}the big red dog{\textquotedblright}) follow certain unmarked ordering rules. While explanatory accounts have been put forward, much of the work done in this area has relied primarily on the intuitive judgment of native speakers, rather than on corpus data. We present the first purely corpus-driven model of multi-lingual adjective ordering in the form of a latent-variable model that can accurately order adjectives across 24 different languages, even when the training and testing languages are different. We utilize this novel statistical model to provide strong converging evidence for the existence of universal, cross-linguistic, hierarchical adjective ordering tendencies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="leung-etal-2020-investigating">
<titleInfo>
<title>Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="given">Yen</namePart>
<namePart type="family">Leung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Across languages, multiple consecutive adjectives modifying a noun (e.g. “the big red dog”) follow certain unmarked ordering rules. While explanatory accounts have been put forward, much of the work done in this area has relied primarily on the intuitive judgment of native speakers, rather than on corpus data. We present the first purely corpus-driven model of multi-lingual adjective ordering in the form of a latent-variable model that can accurately order adjectives across 24 different languages, even when the training and testing languages are different. We utilize this novel statistical model to provide strong converging evidence for the existence of universal, cross-linguistic, hierarchical adjective ordering tendencies.</abstract>
<identifier type="citekey">leung-etal-2020-investigating</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.329</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.329/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>4016</start>
<end>4028</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model
%A Leung, Jun Yen
%A Emerson, Guy
%A Cotterell, Ryan
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F leung-etal-2020-investigating
%X Across languages, multiple consecutive adjectives modifying a noun (e.g. “the big red dog”) follow certain unmarked ordering rules. While explanatory accounts have been put forward, much of the work done in this area has relied primarily on the intuitive judgment of native speakers, rather than on corpus data. We present the first purely corpus-driven model of multi-lingual adjective ordering in the form of a latent-variable model that can accurately order adjectives across 24 different languages, even when the training and testing languages are different. We utilize this novel statistical model to provide strong converging evidence for the existence of universal, cross-linguistic, hierarchical adjective ordering tendencies.
%R 10.18653/v1/2020.emnlp-main.329
%U https://aclanthology.org/2020.emnlp-main.329/
%U https://doi.org/10.18653/v1/2020.emnlp-main.329
%P 4016-4028
Markdown (Informal)
[Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model](https://aclanthology.org/2020.emnlp-main.329/) (Leung et al., EMNLP 2020)
- Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model (Leung et al., EMNLP 2020)
ACL
- Jun Yen Leung, Guy Emerson, and Ryan Cotterell. 2020. Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4016–4028, Online. Association for Computational Linguistics.