@inproceedings{arora-2020-inltk,
title = "i{NLTK}: Natural Language Toolkit for Indic Languages",
author = "Arora, Gaurav",
editor = "Park, Eunjeong L. and
Hagiwara, Masato and
Milajevs, Dmitrijs and
Liu, Nelson F. and
Chauhan, Geeticka and
Tan, Liling",
booktitle = "Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlposs-1.10",
doi = "10.18653/v1/2020.nlposs-1.10",
pages = "66--71",
abstract = "We present iNLTK, an open-source NLP library consisting of pre-trained language models and out-of-the-box support for Data Augmentation, Textual Similarity, Sentence Embeddings, Word Embeddings, Tokenization and Text Generation in 13 Indic Languages. By using pre-trained models from iNLTK for text classification on publicly available datasets, we significantly outperform previously reported results. On these datasets, we also show that by using pre-trained models and data augmentation from iNLTK, we can achieve more than 95{\%} of the previous best performance by using less than 10{\%} of the training data. iNLTK is already being widely used by the community and has 40,000+ downloads, 600+ stars and 100+ forks on GitHub. The library is available at \url{https://github.com/goru001/inltk}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arora-2020-inltk">
<titleInfo>
<title>iNLTK: Natural Language Toolkit for Indic Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gaurav</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eunjeong</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masato</namePart>
<namePart type="family">Hagiwara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dmitrijs</namePart>
<namePart type="family">Milajevs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nelson</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Geeticka</namePart>
<namePart type="family">Chauhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liling</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present iNLTK, an open-source NLP library consisting of pre-trained language models and out-of-the-box support for Data Augmentation, Textual Similarity, Sentence Embeddings, Word Embeddings, Tokenization and Text Generation in 13 Indic Languages. By using pre-trained models from iNLTK for text classification on publicly available datasets, we significantly outperform previously reported results. On these datasets, we also show that by using pre-trained models and data augmentation from iNLTK, we can achieve more than 95% of the previous best performance by using less than 10% of the training data. iNLTK is already being widely used by the community and has 40,000+ downloads, 600+ stars and 100+ forks on GitHub. The library is available at https://github.com/goru001/inltk.</abstract>
<identifier type="citekey">arora-2020-inltk</identifier>
<identifier type="doi">10.18653/v1/2020.nlposs-1.10</identifier>
<location>
<url>https://aclanthology.org/2020.nlposs-1.10</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>66</start>
<end>71</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T iNLTK: Natural Language Toolkit for Indic Languages
%A Arora, Gaurav
%Y Park, Eunjeong L.
%Y Hagiwara, Masato
%Y Milajevs, Dmitrijs
%Y Liu, Nelson F.
%Y Chauhan, Geeticka
%Y Tan, Liling
%S Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F arora-2020-inltk
%X We present iNLTK, an open-source NLP library consisting of pre-trained language models and out-of-the-box support for Data Augmentation, Textual Similarity, Sentence Embeddings, Word Embeddings, Tokenization and Text Generation in 13 Indic Languages. By using pre-trained models from iNLTK for text classification on publicly available datasets, we significantly outperform previously reported results. On these datasets, we also show that by using pre-trained models and data augmentation from iNLTK, we can achieve more than 95% of the previous best performance by using less than 10% of the training data. iNLTK is already being widely used by the community and has 40,000+ downloads, 600+ stars and 100+ forks on GitHub. The library is available at https://github.com/goru001/inltk.
%R 10.18653/v1/2020.nlposs-1.10
%U https://aclanthology.org/2020.nlposs-1.10
%U https://doi.org/10.18653/v1/2020.nlposs-1.10
%P 66-71
Markdown (Informal)
[iNLTK: Natural Language Toolkit for Indic Languages](https://aclanthology.org/2020.nlposs-1.10) (Arora, NLPOSS 2020)
ACL