@inproceedings{morishita-etal-2020-hitachi,
title = "Hitachi at {S}em{E}val-2020 Task 3: Exploring the Representation Spaces of Transformers for Human Sense Word Similarity",
author = "Morishita, Terufumi and
Morio, Gaku and
Ozaki, Hiroaki and
Miyoshi, Toshinori",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.36/",
doi = "10.18653/v1/2020.semeval-1.36",
pages = "286--291",
abstract = "In this paper, we present our system for SemEval-2020 task 3, Predicting the (Graded) Effect of Context in Word Similarity. Due to the unsupervised nature of the task, we concentrated on inquiring about the similarity measures induced by different layers of different pre-trained Transformer-based language models, which can be good approximations of the human sense of word similarity. Interestingly, our experiments reveal a language-independent characteristic: the middle to upper layers of Transformer-based language models can induce good approximate similarity measures. Finally, our system was ranked 1st on the Slovenian part of Subtask1 and 2nd on the Croatian part of both Subtask1 and Subtask2."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morishita-etal-2020-hitachi">
<titleInfo>
<title>Hitachi at SemEval-2020 Task 3: Exploring the Representation Spaces of Transformers for Human Sense Word Similarity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Terufumi</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaku</namePart>
<namePart type="family">Morio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroaki</namePart>
<namePart type="family">Ozaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshinori</namePart>
<namePart type="family">Miyoshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present our system for SemEval-2020 task 3, Predicting the (Graded) Effect of Context in Word Similarity. Due to the unsupervised nature of the task, we concentrated on inquiring about the similarity measures induced by different layers of different pre-trained Transformer-based language models, which can be good approximations of the human sense of word similarity. Interestingly, our experiments reveal a language-independent characteristic: the middle to upper layers of Transformer-based language models can induce good approximate similarity measures. Finally, our system was ranked 1st on the Slovenian part of Subtask1 and 2nd on the Croatian part of both Subtask1 and Subtask2.</abstract>
<identifier type="citekey">morishita-etal-2020-hitachi</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.36</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.36/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>286</start>
<end>291</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hitachi at SemEval-2020 Task 3: Exploring the Representation Spaces of Transformers for Human Sense Word Similarity
%A Morishita, Terufumi
%A Morio, Gaku
%A Ozaki, Hiroaki
%A Miyoshi, Toshinori
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F morishita-etal-2020-hitachi
%X In this paper, we present our system for SemEval-2020 task 3, Predicting the (Graded) Effect of Context in Word Similarity. Due to the unsupervised nature of the task, we concentrated on inquiring about the similarity measures induced by different layers of different pre-trained Transformer-based language models, which can be good approximations of the human sense of word similarity. Interestingly, our experiments reveal a language-independent characteristic: the middle to upper layers of Transformer-based language models can induce good approximate similarity measures. Finally, our system was ranked 1st on the Slovenian part of Subtask1 and 2nd on the Croatian part of both Subtask1 and Subtask2.
%R 10.18653/v1/2020.semeval-1.36
%U https://aclanthology.org/2020.semeval-1.36/
%U https://doi.org/10.18653/v1/2020.semeval-1.36
%P 286-291
Markdown (Informal)
[Hitachi at SemEval-2020 Task 3: Exploring the Representation Spaces of Transformers for Human Sense Word Similarity](https://aclanthology.org/2020.semeval-1.36/) (Morishita et al., SemEval 2020)
- Hitachi at SemEval-2020 Task 3: Exploring the Representation Spaces of Transformers for Human Sense Word Similarity (Morishita et al., SemEval 2020)
ACL
- Terufumi Morishita, Gaku Morio, Hiroaki Ozaki, and Toshinori Miyoshi. 2020. Hitachi at SemEval-2020 Task 3: Exploring the Representation Spaces of Transformers for Human Sense Word Similarity. In Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 286–291, Barcelona (online). International Committee for Computational Linguistics.