@inproceedings{sancheti-etal-2020-lynyrdskynyrd,
title = "{L}ynyrd{S}kynyrd at {WNUT}-2020 Task 2: Semi-Supervised Learning for Identification of Informative {COVID}-19 {E}nglish Tweets",
author = "Sancheti, Abhilasha and
Chawla, Kushal and
Verma, Gaurav",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.65",
doi = "10.18653/v1/2020.wnut-1.65",
pages = "444--449",
abstract = "In this work, we describe our system for WNUT-2020 shared task on the identification of informative COVID-19 English tweets. Our system is an ensemble of various machine learning methods, leveraging both traditional feature-based classifiers as well as recent advances in pre-trained language models that help in capturing the syntactic, semantic, and contextual features from the tweets. We further employ pseudo-labelling to incorporate the unlabelled Twitter data released on the pandemic. Our best performing model achieves an F1-score of 0.9179 on the provided validation set and 0.8805 on the blind test-set.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sancheti-etal-2020-lynyrdskynyrd">
<titleInfo>
<title>LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for Identification of Informative COVID-19 English Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhilasha</namePart>
<namePart type="family">Sancheti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kushal</namePart>
<namePart type="family">Chawla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaurav</namePart>
<namePart type="family">Verma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we describe our system for WNUT-2020 shared task on the identification of informative COVID-19 English tweets. Our system is an ensemble of various machine learning methods, leveraging both traditional feature-based classifiers as well as recent advances in pre-trained language models that help in capturing the syntactic, semantic, and contextual features from the tweets. We further employ pseudo-labelling to incorporate the unlabelled Twitter data released on the pandemic. Our best performing model achieves an F1-score of 0.9179 on the provided validation set and 0.8805 on the blind test-set.</abstract>
<identifier type="citekey">sancheti-etal-2020-lynyrdskynyrd</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.65</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.65</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>444</start>
<end>449</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for Identification of Informative COVID-19 English Tweets
%A Sancheti, Abhilasha
%A Chawla, Kushal
%A Verma, Gaurav
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F sancheti-etal-2020-lynyrdskynyrd
%X In this work, we describe our system for WNUT-2020 shared task on the identification of informative COVID-19 English tweets. Our system is an ensemble of various machine learning methods, leveraging both traditional feature-based classifiers as well as recent advances in pre-trained language models that help in capturing the syntactic, semantic, and contextual features from the tweets. We further employ pseudo-labelling to incorporate the unlabelled Twitter data released on the pandemic. Our best performing model achieves an F1-score of 0.9179 on the provided validation set and 0.8805 on the blind test-set.
%R 10.18653/v1/2020.wnut-1.65
%U https://aclanthology.org/2020.wnut-1.65
%U https://doi.org/10.18653/v1/2020.wnut-1.65
%P 444-449
Markdown (Informal)
[LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for Identification of Informative COVID-19 English Tweets](https://aclanthology.org/2020.wnut-1.65) (Sancheti et al., WNUT 2020)
ACL