@inproceedings{li-xiao-2021-neural,
title = "Neural-based {RST} Parsing And Analysis In Persuasive Discourse",
author = "Li, Jinfen and
Xiao, Lu",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wnut-1.30/",
doi = "10.18653/v1/2021.wnut-1.30",
pages = "274--283",
abstract = "Most of the existing studies of language use in social media content have focused on the surface-level linguistic features (e.g., function words and punctuation marks) and the semantic level aspects (e.g., the topics, sentiment, and emotions) of the comments. The writer`s strategies of constructing and connecting text segments have not been widely explored even though this knowledge is expected to shed light on how people reason in online environments. Contributing to this analysis direction for social media studies, we build an openly accessible neural RST parsing system that analyzes discourse relations in an online comment. Our experiments demonstrate that this system achieves comparable performance among all the neural RST parsing systems. To demonstrate the use of this tool in social media analysis, we apply it to identify the discourse relations in persuasive and non-persuasive comments and examine the relationships among the binary discourse tree depth, discourse relations, and the perceived persuasiveness of online comments. Our work demonstrates the potential of analyzing discourse structures of online comments with our system and the implications of these structures for understanding online communications."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-xiao-2021-neural">
<titleInfo>
<title>Neural-based RST Parsing And Analysis In Persuasive Discourse</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jinfen</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most of the existing studies of language use in social media content have focused on the surface-level linguistic features (e.g., function words and punctuation marks) and the semantic level aspects (e.g., the topics, sentiment, and emotions) of the comments. The writer‘s strategies of constructing and connecting text segments have not been widely explored even though this knowledge is expected to shed light on how people reason in online environments. Contributing to this analysis direction for social media studies, we build an openly accessible neural RST parsing system that analyzes discourse relations in an online comment. Our experiments demonstrate that this system achieves comparable performance among all the neural RST parsing systems. To demonstrate the use of this tool in social media analysis, we apply it to identify the discourse relations in persuasive and non-persuasive comments and examine the relationships among the binary discourse tree depth, discourse relations, and the perceived persuasiveness of online comments. Our work demonstrates the potential of analyzing discourse structures of online comments with our system and the implications of these structures for understanding online communications.</abstract>
<identifier type="citekey">li-xiao-2021-neural</identifier>
<identifier type="doi">10.18653/v1/2021.wnut-1.30</identifier>
<location>
<url>https://aclanthology.org/2021.wnut-1.30/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>274</start>
<end>283</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural-based RST Parsing And Analysis In Persuasive Discourse
%A Li, Jinfen
%A Xiao, Lu
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online
%F li-xiao-2021-neural
%X Most of the existing studies of language use in social media content have focused on the surface-level linguistic features (e.g., function words and punctuation marks) and the semantic level aspects (e.g., the topics, sentiment, and emotions) of the comments. The writer‘s strategies of constructing and connecting text segments have not been widely explored even though this knowledge is expected to shed light on how people reason in online environments. Contributing to this analysis direction for social media studies, we build an openly accessible neural RST parsing system that analyzes discourse relations in an online comment. Our experiments demonstrate that this system achieves comparable performance among all the neural RST parsing systems. To demonstrate the use of this tool in social media analysis, we apply it to identify the discourse relations in persuasive and non-persuasive comments and examine the relationships among the binary discourse tree depth, discourse relations, and the perceived persuasiveness of online comments. Our work demonstrates the potential of analyzing discourse structures of online comments with our system and the implications of these structures for understanding online communications.
%R 10.18653/v1/2021.wnut-1.30
%U https://aclanthology.org/2021.wnut-1.30/
%U https://doi.org/10.18653/v1/2021.wnut-1.30
%P 274-283
Markdown (Informal)
[Neural-based RST Parsing And Analysis In Persuasive Discourse](https://aclanthology.org/2021.wnut-1.30/) (Li & Xiao, WNUT 2021)
- Neural-based RST Parsing And Analysis In Persuasive Discourse (Li & Xiao, WNUT 2021)
ACL
- Jinfen Li and Lu Xiao. 2021. Neural-based RST Parsing And Analysis In Persuasive Discourse. In Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021), pages 274–283, Online. Association for Computational Linguistics.