@inproceedings{xu-etal-2023-mpmr,
title = "m{PMR}: A Multilingual Pre-trained Machine Reader at Scale",
author = "Xu, Weiwen and
Li, Xin and
Lam, Wai and
Bing, Lidong",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-short.131/",
doi = "10.18653/v1/2023.acl-short.131",
pages = "1533--1546",
abstract = "We present multilingual Pre-trained Machine Reader (mPMR), a novel method for multilingual machine reading comprehension (MRC)-style pre-training. mPMR aims to guide multilingual pre-trained language models (mPLMs) to perform natural language understanding (NLU) including both sequence classification and span extraction in multiple languages. To achieve cross-lingual generalization when only source-language fine-tuning data is available, existing mPLMs solely transfer NLU capability from a source language to target languages. In contrast, mPMR allows the direct inheritance of multilingual NLU capability from the MRC-style pre-training to downstream tasks. Therefore, mPMR acquires better NLU capability for target languages. mPMR also provides a unified solver for tackling cross-lingual span extraction and sequence classification, thereby enabling the extraction of rationales to explain the sentence-pair classification process."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2023-mpmr">
<titleInfo>
<title>mPMR: A Multilingual Pre-trained Machine Reader at Scale</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weiwen</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wai</namePart>
<namePart type="family">Lam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidong</namePart>
<namePart type="family">Bing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present multilingual Pre-trained Machine Reader (mPMR), a novel method for multilingual machine reading comprehension (MRC)-style pre-training. mPMR aims to guide multilingual pre-trained language models (mPLMs) to perform natural language understanding (NLU) including both sequence classification and span extraction in multiple languages. To achieve cross-lingual generalization when only source-language fine-tuning data is available, existing mPLMs solely transfer NLU capability from a source language to target languages. In contrast, mPMR allows the direct inheritance of multilingual NLU capability from the MRC-style pre-training to downstream tasks. Therefore, mPMR acquires better NLU capability for target languages. mPMR also provides a unified solver for tackling cross-lingual span extraction and sequence classification, thereby enabling the extraction of rationales to explain the sentence-pair classification process.</abstract>
<identifier type="citekey">xu-etal-2023-mpmr</identifier>
<identifier type="doi">10.18653/v1/2023.acl-short.131</identifier>
<location>
<url>https://aclanthology.org/2023.acl-short.131/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1533</start>
<end>1546</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T mPMR: A Multilingual Pre-trained Machine Reader at Scale
%A Xu, Weiwen
%A Li, Xin
%A Lam, Wai
%A Bing, Lidong
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F xu-etal-2023-mpmr
%X We present multilingual Pre-trained Machine Reader (mPMR), a novel method for multilingual machine reading comprehension (MRC)-style pre-training. mPMR aims to guide multilingual pre-trained language models (mPLMs) to perform natural language understanding (NLU) including both sequence classification and span extraction in multiple languages. To achieve cross-lingual generalization when only source-language fine-tuning data is available, existing mPLMs solely transfer NLU capability from a source language to target languages. In contrast, mPMR allows the direct inheritance of multilingual NLU capability from the MRC-style pre-training to downstream tasks. Therefore, mPMR acquires better NLU capability for target languages. mPMR also provides a unified solver for tackling cross-lingual span extraction and sequence classification, thereby enabling the extraction of rationales to explain the sentence-pair classification process.
%R 10.18653/v1/2023.acl-short.131
%U https://aclanthology.org/2023.acl-short.131/
%U https://doi.org/10.18653/v1/2023.acl-short.131
%P 1533-1546
Markdown (Informal)
[mPMR: A Multilingual Pre-trained Machine Reader at Scale](https://aclanthology.org/2023.acl-short.131/) (Xu et al., ACL 2023)
- mPMR: A Multilingual Pre-trained Machine Reader at Scale (Xu et al., ACL 2023)
ACL
- Weiwen Xu, Xin Li, Wai Lam, and Lidong Bing. 2023. mPMR: A Multilingual Pre-trained Machine Reader at Scale. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 1533–1546, Toronto, Canada. Association for Computational Linguistics.