@inproceedings{sarkar-etal-2023-zero,
title = "Zero-Shot Multi-Label Topic Inference with Sentence Encoders and {LLM}s",
author = "Sarkar, Souvika and
Feng, Dongji and
Karmaker Santu, Shubhra Kanti",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.1008",
doi = "10.18653/v1/2023.emnlp-main.1008",
pages = "16218--16233",
abstract = "In this paper, we conducted a comprehensive study with the latest Sentence Encoders and Large Language Models (LLMs) on the challenging task of {``}definition-wild zero-shot topic inference{''}, where users define or provide the topics of interest in real-time. Through extensive experimentation on seven diverse data sets, we observed that LLMs, such as ChatGPT-3.5 and PaLM, demonstrated superior generality compared to other LLMs, e.g., BLOOM and GPT-NeoX. Furthermore, Sentence-BERT, a BERT-based classical sentence encoder, outperformed PaLM and achieved performance comparable to ChatGPT-3.5.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sarkar-etal-2023-zero">
<titleInfo>
<title>Zero-Shot Multi-Label Topic Inference with Sentence Encoders and LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Souvika</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongji</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shubhra</namePart>
<namePart type="given">Kanti</namePart>
<namePart type="family">Karmaker Santu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we conducted a comprehensive study with the latest Sentence Encoders and Large Language Models (LLMs) on the challenging task of “definition-wild zero-shot topic inference”, where users define or provide the topics of interest in real-time. Through extensive experimentation on seven diverse data sets, we observed that LLMs, such as ChatGPT-3.5 and PaLM, demonstrated superior generality compared to other LLMs, e.g., BLOOM and GPT-NeoX. Furthermore, Sentence-BERT, a BERT-based classical sentence encoder, outperformed PaLM and achieved performance comparable to ChatGPT-3.5.</abstract>
<identifier type="citekey">sarkar-etal-2023-zero</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.1008</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.1008</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>16218</start>
<end>16233</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zero-Shot Multi-Label Topic Inference with Sentence Encoders and LLMs
%A Sarkar, Souvika
%A Feng, Dongji
%A Karmaker Santu, Shubhra Kanti
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F sarkar-etal-2023-zero
%X In this paper, we conducted a comprehensive study with the latest Sentence Encoders and Large Language Models (LLMs) on the challenging task of “definition-wild zero-shot topic inference”, where users define or provide the topics of interest in real-time. Through extensive experimentation on seven diverse data sets, we observed that LLMs, such as ChatGPT-3.5 and PaLM, demonstrated superior generality compared to other LLMs, e.g., BLOOM and GPT-NeoX. Furthermore, Sentence-BERT, a BERT-based classical sentence encoder, outperformed PaLM and achieved performance comparable to ChatGPT-3.5.
%R 10.18653/v1/2023.emnlp-main.1008
%U https://aclanthology.org/2023.emnlp-main.1008
%U https://doi.org/10.18653/v1/2023.emnlp-main.1008
%P 16218-16233
Markdown (Informal)
[Zero-Shot Multi-Label Topic Inference with Sentence Encoders and LLMs](https://aclanthology.org/2023.emnlp-main.1008) (Sarkar et al., EMNLP 2023)
ACL