@inproceedings{tay-etal-2018-attentive,
title = "Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sentiment Classification",
author = "Tay, Yi and
Luu, Anh Tuan and
Hui, Siu Cheung and
Su, Jian",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1381/",
doi = "10.18653/v1/D18-1381",
pages = "3443--3453",
abstract = "This paper proposes a new neural architecture that exploits readily available sentiment lexicon resources. The key idea is that that incorporating a word-level prior can aid in the representation learning process, eventually improving model performance. To this end, our model employs two distinctly unique components, i.e., (1) we introduce a lexicon-driven contextual attention mechanism to imbue lexicon words with long-range contextual information and (2), we introduce a contrastive co-attention mechanism that models contrasting polarities between all positive and negative words in a sentence. Via extensive experiments, we show that our approach outperforms many other neural baselines on sentiment classification tasks on multiple benchmark datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tay-etal-2018-attentive">
<titleInfo>
<title>Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sentiment Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Tay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anh</namePart>
<namePart type="given">Tuan</namePart>
<namePart type="family">Luu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siu</namePart>
<namePart type="given">Cheung</namePart>
<namePart type="family">Hui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a new neural architecture that exploits readily available sentiment lexicon resources. The key idea is that that incorporating a word-level prior can aid in the representation learning process, eventually improving model performance. To this end, our model employs two distinctly unique components, i.e., (1) we introduce a lexicon-driven contextual attention mechanism to imbue lexicon words with long-range contextual information and (2), we introduce a contrastive co-attention mechanism that models contrasting polarities between all positive and negative words in a sentence. Via extensive experiments, we show that our approach outperforms many other neural baselines on sentiment classification tasks on multiple benchmark datasets.</abstract>
<identifier type="citekey">tay-etal-2018-attentive</identifier>
<identifier type="doi">10.18653/v1/D18-1381</identifier>
<location>
<url>https://aclanthology.org/D18-1381/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3443</start>
<end>3453</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sentiment Classification
%A Tay, Yi
%A Luu, Anh Tuan
%A Hui, Siu Cheung
%A Su, Jian
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F tay-etal-2018-attentive
%X This paper proposes a new neural architecture that exploits readily available sentiment lexicon resources. The key idea is that that incorporating a word-level prior can aid in the representation learning process, eventually improving model performance. To this end, our model employs two distinctly unique components, i.e., (1) we introduce a lexicon-driven contextual attention mechanism to imbue lexicon words with long-range contextual information and (2), we introduce a contrastive co-attention mechanism that models contrasting polarities between all positive and negative words in a sentence. Via extensive experiments, we show that our approach outperforms many other neural baselines on sentiment classification tasks on multiple benchmark datasets.
%R 10.18653/v1/D18-1381
%U https://aclanthology.org/D18-1381/
%U https://doi.org/10.18653/v1/D18-1381
%P 3443-3453
Markdown (Informal)
[Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sentiment Classification](https://aclanthology.org/D18-1381/) (Tay et al., EMNLP 2018)
- Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sentiment Classification (Tay et al., EMNLP 2018)
ACL
- Yi Tay, Anh Tuan Luu, Siu Cheung Hui, and Jian Su. 2018. Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sentiment Classification. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3443–3453, Brussels, Belgium. Association for Computational Linguistics.