@inproceedings{koshorek-etal-2019-limits,
title = "On the Limits of Learning to Actively Learn Semantic Representations",
author = "Koshorek, Omri and
Stanovsky, Gabriel and
Zhou, Yichu and
Srikumar, Vivek and
Berant, Jonathan",
editor = "Bansal, Mohit and
Villavicencio, Aline",
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K19-1042/",
doi = "10.18653/v1/K19-1042",
pages = "452--462",
abstract = "One of the goals of natural language understanding is to develop models that map sentences into meaning representations. However, training such models requires expensive annotation of complex structures, which hinders their adoption. Learning to actively-learn(LTAL) is a recent paradigm for reducing the amount of labeled data by learning a policy that selects which samples should be labeled. In this work, we examine LTAL for learning semantic representations, such as QA-SRL. We show that even an oracle policy that is allowed to pick examples that maximize performance on the test set (and constitutes an upper bound on the potential of LTAL), does not substantially improve performance compared to a random policy. We investigate factors that could explain this finding and show that a distinguishing characteristic of successful applications of LTAL is the interaction between optimization and the oracle policy selection process. In successful applications of LTAL, the examples selected by the oracle policy do not substantially depend on the optimization procedure, while in our setup the stochastic nature of optimization strongly affects the examples selected by the oracle. We conclude that the current applicability of LTAL for improving data efficiency in learning semantic meaning representations is limited."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koshorek-etal-2019-limits">
<titleInfo>
<title>On the Limits of Learning to Actively Learn Semantic Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Omri</namePart>
<namePart type="family">Koshorek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichu</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>One of the goals of natural language understanding is to develop models that map sentences into meaning representations. However, training such models requires expensive annotation of complex structures, which hinders their adoption. Learning to actively-learn(LTAL) is a recent paradigm for reducing the amount of labeled data by learning a policy that selects which samples should be labeled. In this work, we examine LTAL for learning semantic representations, such as QA-SRL. We show that even an oracle policy that is allowed to pick examples that maximize performance on the test set (and constitutes an upper bound on the potential of LTAL), does not substantially improve performance compared to a random policy. We investigate factors that could explain this finding and show that a distinguishing characteristic of successful applications of LTAL is the interaction between optimization and the oracle policy selection process. In successful applications of LTAL, the examples selected by the oracle policy do not substantially depend on the optimization procedure, while in our setup the stochastic nature of optimization strongly affects the examples selected by the oracle. We conclude that the current applicability of LTAL for improving data efficiency in learning semantic meaning representations is limited.</abstract>
<identifier type="citekey">koshorek-etal-2019-limits</identifier>
<identifier type="doi">10.18653/v1/K19-1042</identifier>
<location>
<url>https://aclanthology.org/K19-1042/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>452</start>
<end>462</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Limits of Learning to Actively Learn Semantic Representations
%A Koshorek, Omri
%A Stanovsky, Gabriel
%A Zhou, Yichu
%A Srikumar, Vivek
%A Berant, Jonathan
%Y Bansal, Mohit
%Y Villavicencio, Aline
%S Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F koshorek-etal-2019-limits
%X One of the goals of natural language understanding is to develop models that map sentences into meaning representations. However, training such models requires expensive annotation of complex structures, which hinders their adoption. Learning to actively-learn(LTAL) is a recent paradigm for reducing the amount of labeled data by learning a policy that selects which samples should be labeled. In this work, we examine LTAL for learning semantic representations, such as QA-SRL. We show that even an oracle policy that is allowed to pick examples that maximize performance on the test set (and constitutes an upper bound on the potential of LTAL), does not substantially improve performance compared to a random policy. We investigate factors that could explain this finding and show that a distinguishing characteristic of successful applications of LTAL is the interaction between optimization and the oracle policy selection process. In successful applications of LTAL, the examples selected by the oracle policy do not substantially depend on the optimization procedure, while in our setup the stochastic nature of optimization strongly affects the examples selected by the oracle. We conclude that the current applicability of LTAL for improving data efficiency in learning semantic meaning representations is limited.
%R 10.18653/v1/K19-1042
%U https://aclanthology.org/K19-1042/
%U https://doi.org/10.18653/v1/K19-1042
%P 452-462
Markdown (Informal)
[On the Limits of Learning to Actively Learn Semantic Representations](https://aclanthology.org/K19-1042/) (Koshorek et al., CoNLL 2019)
- On the Limits of Learning to Actively Learn Semantic Representations (Koshorek et al., CoNLL 2019)
ACL
- Omri Koshorek, Gabriel Stanovsky, Yichu Zhou, Vivek Srikumar, and Jonathan Berant. 2019. On the Limits of Learning to Actively Learn Semantic Representations. In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pages 452–462, Hong Kong, China. Association for Computational Linguistics.