Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 26, 2011

An optimal iteration method with application to the Thomas-Fermi equation

  • Vasile Marinca EMAIL logo and Nicolae Herişanu
From the journal Open Physics

Abstract

The aim of this paper is to introduce a new approximate method, namely the Optimal Parametric Iteration Method (OPIM) to provide an analytical approximate solution to Thomas-Fermi equation. This new iteration approach provides us with a convenient way to optimally control the convergence of the approximate solution. A good agreement between the obtained solution and some well-known results has been demonstrated. The proposed technique can be easily applied to handle other strongly nonlinear problems.

[1] S. Kobayashi et al., J. Phys. Soc. Jpn. 10, 759 (1955) http://dx.doi.org/10.1143/JPSJ.10.75910.1143/JPSJ.10.759Search in Google Scholar

[2] B.L. Burrows, P.W. Core, Q. Appl. Math. 42, 73 (1984) 10.1090/qam/736506Search in Google Scholar

[3] M.S. Wu, Phys. Rev. A 6, 57 (1982) http://dx.doi.org/10.1103/PhysRevA.26.5710.1103/PhysRevA.26.57Search in Google Scholar

[4] J.H. He, H.M. Liu, Nonlinear Anal. Theory Methods Appl. 63, 919 (2005) http://dx.doi.org/10.1016/j.na.2005.01.08610.1016/j.na.2005.01.086Search in Google Scholar

[5] H. Krutter, J. Comput. Phys. 47, 308 (1982) http://dx.doi.org/10.1016/0021-9991(82)90083-310.1016/0021-9991(82)90083-3Search in Google Scholar

[6] C. Grossmann, J. Comput. Phys. 98, 26 (1992) http://dx.doi.org/10.1016/0021-9991(92)90170-410.1016/0021-9991(92)90170-4Search in Google Scholar

[7] A. Cedillo, J. Math. Phys. 34, 2713 (1993) http://dx.doi.org/10.1063/1.53009010.1063/1.530090Search in Google Scholar

[8] A.M. Wazwaz, Math. Comput. 105, 11 (1999) 10.1016/S0096-3003(98)10090-5Search in Google Scholar

[9] S.J. Liao, Appl. Math. Comput. 144, 495 (2003) http://dx.doi.org/10.1016/S0096-3003(02)00423-X10.1016/S0096-3003(02)00423-XSearch in Google Scholar

[10] S.J. Liao, Beyond perturbation: introduction to the homotopy analysis method (Chapmann & Hall/CRC Press, Boca Raton, 2003) http://dx.doi.org/10.1201/978020349116410.1201/9780203491164Search in Google Scholar

[11] H. Khan, H. Xu, Phys. Lett. A 365, 111 (2009) http://dx.doi.org/10.1016/j.physleta.2006.12.06410.1016/j.physleta.2006.12.064Search in Google Scholar

[12] B. Yao, Appl. Math. Comput. 203, 396 (2008) http://dx.doi.org/10.1016/j.amc.2008.04.05010.1016/j.amc.2008.04.050Search in Google Scholar

[13] C.Y. Chan, Y.C. Han, Q. Appl. Math. 45, 591 (1989) 10.1002/phbl.19890450818Search in Google Scholar

[14] J.I. Ramos, Comput. Phys. Commun. 158, 14 (2004) http://dx.doi.org/10.1016/j.comphy.2003.11.00310.1016/j.comphy.2003.11.003Search in Google Scholar

[15] J.H. He, G.C. Wu, F. Austin, Nonlinear Science Letters A, 1, 1 (2010) Search in Google Scholar

[16] N. Herişanu, V. Marinca, Nonlinear Science Letters A, 1, 183 (2010) 10.1155/2011/169056Search in Google Scholar

[17] R.E. Mickens, J. Sound Vib. 16, 185 (1987) http://dx.doi.org/10.1016/S0022-460X(87)81330-510.1016/S0022-460X(87)81330-5Search in Google Scholar

[18] C.W. Lim, B.S. Wu, J. Sound Vib. 257, 202 (2002) http://dx.doi.org/10.1006/jsvi.2001.423310.1006/jsvi.2001.4233Search in Google Scholar

[19] V. Marinca, N. Herişanu, Acta Mech. 184, 231 (2006) http://dx.doi.org/10.1007/s00707-006-0336-510.1007/s00707-006-0336-5Search in Google Scholar

[20] N. Herişanu, V. Marinca, Int. J. Nonlin. Sci. Num. 10, 353 (2009) http://dx.doi.org/10.1515/IJNSNS.2009.10.3.35310.1515/IJNSNS.2009.10.3.353Search in Google Scholar

Published Online: 2011-2-26
Published in Print: 2011-6-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 10.10.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-010-0059-z/html
Scroll to top button