Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 

 
   

 

Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.4 No.4 July 2004

Connections between relative entropy of entanglement and geometric measure of entanglement (pp252-272)
       
T.-C. Wei, M. Ericsson, P.M. Goldbart, and W.J. Munro
         
doi:https://doi.org/10.26421/QIC4.4-2

Abstracts: As two of the most important entanglement measures---the entanglement of formation and the entanglement of distillation---have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessary. Here, connections between two other entanglement measures---the relative entropy of entanglement and the geometric measure of entanglement---are investigated. It is found that for arbitrary pure states the latter gives rise to a lower bound on the former. For certain pure states, some bipartite and some multipartite, this lower bound is saturated, and thus their relative entropy of entanglement can be found analytically in terms of their known geometric measure of entanglement. For certain mixed states, upper bounds on the relative entropy of entanglement are also established. Numerical evidence strongly suggests that these upper bounds are tight, i.e., they are actually the relative entropy of entanglement.
Key words:  entanglement, relative entropy, geometric measure, maximal overlap

 

¡¡