Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 

 
   

 

Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.8 No.3&4  March 2008 

Entanglement and separability of quantum harmonic oscillator systems at finite temperature (pp0245-0262)
          
Janet Anders and Andreas Winter
         
doi: https://doi.org/10.26421/QIC8.3-4-2

Abstracts: In the present paper we study the entanglement properties of thermal (a.k.a. Gibbs) states of quantum harmonic oscillator systems as functions of the Hamiltonian and the temperature. We prove the physical intuition that at sufficiently high temperatures the thermal state becomes fully separable and we deduce bounds on the critical temperature at which this happens. We show that the bound becomes tight for a wide class of Hamiltonians with sufficient translation symmetry. We find, that at the crossover the thermal energy is of the order of the energy of the strongest normal mode of the system and quantify the degree of entanglement below the critical temperature. Finally, we discuss the example of a ring topology in detail and compare our results with previous work in an entanglement-phase diagram.
Key words:  full separability, entanglement, thermal states, harmonic chains

 

¡¡