Bai S, Ren XL, Obata K, Ito Y, Sugioka K. Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip. Opto-Electron Adv 5, 210121 (2022). doi: 10.29026/oea.2022.210121
Citation: Bai S, Ren XL, Obata K, Ito Y, Sugioka K. Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip. Opto-Electron Adv 5, 210121 (2022). doi: 10.29026/oea.2022.210121

Original Article Open Access

Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip

More Information
  • Surface-enhanced Raman scattering (SERS), owing to its high sensitivity based on localized surface plasmon resonance of nanostructured metals, is recently attracting much attention to be used for biotechnology, such as cell imaging and tumor therapy. On the other hand, the trace detection of bio-molecules with large molecular weight is still challenging because the troublesome treatment of SERS substrate using coupling or cross-linking agents is required. In this paper, we apply liquid interface assisted SERS (LI-SERS) method, which provides unique features of collection and self-immobilization of analyte molecules on the SERS substrate, to realize the label-free trace detection of bio-molecules with detection limits of pM ~ fM. Specifically, deoxyribonucleic acid (DNA) discrimination and quantitative detection of β-Amyloid (Aβ) in trace-concentration are demonstrated to illustrate the ultrahigh sensitivity and versatility of the LI-SERS method. The results suggest LI-SERS is promising for the early-stage diagnosis of diseases such as virus infection and Alzheimer's disease.
  • 加载中
  • [1] Wang J, Koo KM, Wang YL, Trau M. Engineering state-of-the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications. Adv Sci 6, 1900730 (2019). doi: 10.1002/advs.201900730

    CrossRef Google Scholar

    [2] Etchegoin P, Cohen LF, Hartigan H, Brown RJC, Milto MJT et al. Electromagnetic contribution to surface enhanced Raman scattering revisited. J Chem Phys 119, 5281–5289 (2003). doi: 10.1063/1.1597480

    CrossRef Google Scholar

    [3] Kennedy BJ, Spaeth S, Dickey M, Carron KT. Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. J Phys Chem B 103, 3640–3646 (1999). doi: 10.1021/jp984454i

    CrossRef Google Scholar

    [4] Bai S, Sugioka K. Recent advances in the fabrication of highly sensitive surface-enhanced Raman scattering substrates: nanomolar to attomolar level sensing. Light Adv Manuf 2, 13 (2021). doi: 10.37188/lam.2021.013

    CrossRef Google Scholar

    [5] Koo KM, Wang J, Richards RS, Farrell A, Yaxley JW et al. Design and clinical verification of surface-enhanced Raman spectroscopy diagnostic technology for individual cancer risk prediction. ACS Nano 12, 8362–8371 (2018). doi: 10.1021/acsnano.8b03698

    CrossRef Google Scholar

    [6] Pal S, Ray A, Andreou C, Zhou YD, Rakshit T et al. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nat Commun 10, 1926 (2019). doi: 10.1038/s41467-019-09173-2

    CrossRef Google Scholar

    [7] Shin HH, Yeon GJ, Choi HK, Park SM, Lee KS et al. Frequency-domain proof of the existence of atomic-scale SERS hot-spots. Nano Lett 18, 262–271 (2018). doi: 10.1021/acs.nanolett.7b04052

    CrossRef Google Scholar

    [8] Kitahama Y, Araki D, Yamamoto YS, Itoh T, Ozaki Y. Different behaviour of molecules in dark SERS state on colloidal Ag nanoparticles estimated by truncated power law analysis of blinking SERS. Phys Chem Chem Phys 17, 21204–21210 (2015). doi: 10.1039/C4CP05070C

    CrossRef Google Scholar

    [9] Bai S, Serien D, Ma Y, Obata K, Sugioka K. Attomolar sensing based on liquid interface-assisted surface-enhanced Raman scattering in microfluidic chip by femtosecond laser processing. ACS Appl Mater Interfaces 12, 42328–42338 (2020). doi: 10.1021/acsami.0c11322

    CrossRef Google Scholar

    [10] Bai S, Serien D, Hu AM, Sugioka K. 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv Funct Mater 28, 1706262 (2018). doi: 10.1002/adfm.201706262

    CrossRef Google Scholar

    [11] Reguera J, Langer J, De Aberasturi DJ, Liz-Marzán LM. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev 46, 3866–3885 (2017). doi: 10.1039/C7CS00158D

    CrossRef Google Scholar

    [12] Bell SEJ, Charron G, Cortés G, Kneipp J, De La Chapelle ML et al. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice. Angew Chem Int Ed 59, 5454–5462 (2020). doi: 10.1002/anie.201908154

    CrossRef Google Scholar

    [13] Xu J, Wu D, Hanada Y, Chen C, Wu SZ et al. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing. Lab Chip 13, 4608–4616 (2013). doi: 10.1039/c3lc50962a

    CrossRef Google Scholar

    [14] Wu D, Xu J, Niu LG, Wu SZ, Midorikawa K et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci Appl 4, e228 (2015). doi: 10.1038/lsa.2015.1

    CrossRef Google Scholar

    [15] Sugioka K. Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review. Int J Extrem Manuf 1, 012003 (2019). doi: 10.1088/2631-7990/ab0eda

    CrossRef Google Scholar

    [16] Kita Y, Askounis A, Kohno M, Takata Y, Kim J et al. Induction of marangoni convection in pure water drops. Appl Phys Lett 109, 171602 (2016). doi: 10.1063/1.4966542

    CrossRef Google Scholar

    [17] Neuman KC, Block SM. Optical trapping. Rev Sci Instrum 75, 2787–2809 (2004). doi: 10.1063/1.1785844

    CrossRef Google Scholar

    [18] Dai X, Fu WH, Chi HY, St. Dollente Mesias V, Zhu HN et al. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures. Nat Commun 12, 1292 (2021). doi: 10.1038/s41467-021-21543-3

    CrossRef Google Scholar

    [19] Shoji T, Itoh K, Saitoh J, Kitamura N, Yoshii T et al. Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution. Sci Rep 10, 3349 (2020). doi: 10.1038/s41598-020-60165-5

    CrossRef Google Scholar

    [20] Lin DD, Wu ZL, Li SJ, Zhao WQ, Ma CJ et al. Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano 11, 1478–1487 (2017). doi: 10.1021/acsnano.6b06778

    CrossRef Google Scholar

    [21] Park HJ, Cho S, Kim M, Jung YS. Carboxylic acid-functionalized, graphitic layer-coated three-dimensional SERS substrate for label-free analysis of alzheimer’s disease biomarkers. Nano Lett 20, 2576–2584 (2020). doi: 10.1021/acs.nanolett.0c00048

    CrossRef Google Scholar

    [22] Camafeita LE, Sánchez-Cortés S, García-Ramos JV. SERS of cytosine and its methylated derivatives on gold sols. J Raman Spectrosc 26, 149–154 (1995). doi: 10.1002/jrs.1250260207

    CrossRef Google Scholar

    [23] Bonse J, Gräf S. Maxwell meets marangoni—A review of theories on laser-induced periodic surface structures. Laser Photonics Rev 14, 2000215 (2020). doi: 10.1002/lpor.202000215

    CrossRef Google Scholar

    [24] Schneidewind H, Weber K, Zeisberger M, Hübner U, Dellith A et al. The effect of silver thickness on the enhancement of polymer based SERS substrates. Nanotechnology 25, 445203 (2014). doi: 10.1088/0957-4484/25/44/445203

    CrossRef Google Scholar

    [25] Herrmann LO, Valev VK, Tserkezis C, Barnard JS, Kasera S et al. Threading plasmonic nanoparticle strings with light. Nat Commun 5, 4568 (2014). doi: 10.1038/ncomms5568

    CrossRef Google Scholar

    [26] Ma ZC, Zhang YL, Han B, Liu XQ, Zhang HZ et al. Femtosecond laser direct writing of plasmonic Ag/Pd alloy nanostructures enables flexible integration of robust SERS substrates. Adv Mater Technol 2, 1600270 (2017). doi: 10.1002/admt.201600270

    CrossRef Google Scholar

    [27] Le Ru EC, Blackie E, Meyer M, Etchegoin PG. Surface enhanced raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111, 13794–13803 (2007). doi: 10.1021/jp0687908

    CrossRef Google Scholar

    [28] Jang NH. The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS. Bull Korean Chem Soc 23, 1790–1800 (2002). doi: 10.5012/bkcs.2002.23.12.1790

    CrossRef Google Scholar

    [29] Jiao L, Wang ZB, Chen R, Zhu X, Liao Q et al. Simulation on the marangoni flow and heat transfer in a laser-heated suspended droplet. Chem Eng Sci 209, 115202 (2019). doi: 10.1016/j.ces.2019.115202

    CrossRef Google Scholar

    [30] Li SZ, Chen R, Zhu X, Liao Q. Numerical investigation of the marangoni convection during the liquid column evaporation in microchannels caused by IR laser heating. Int J Heat Mass Transf 101, 970–980 (2016). doi: 10.1016/j.ijheatmasstransfer.2016.05.119

    CrossRef Google Scholar

    [31] Pyrak E, Jaworska A, Kudelski A. SERS studies of adsorption on gold surfaces of mononucleotides with attached hexanethiol moiety: comparison with selected single-stranded thiolated DNA fragments. Molecules 24, 3921 (2019). doi: 10.3390/molecules24213921

    CrossRef Google Scholar

    [32] Kundu J, Neumann O, Janesko BG, Zhang D, Lal S et al. Adenine− and adenosine monophosphate (AMP)−gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies. J Phys Chem C 113, 14390–14397 (2009). doi: 10.1021/jp903126f

    CrossRef Google Scholar

    [33] Wu L, Garrido-Maestu A, Guerreiro JRL, Carvalho S, Abalde-Cela S et al. Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity. Nanoscale 11, 7781–7789 (2019). doi: 10.1039/C9NR00501C

    CrossRef Google Scholar

    [34] Liu Y, Lyu NN, Rajendran VK, Piper J, Rodger A et al. Sensitive and direct DNA mutation detection by surface-enhanced raman spectroscopy using rational designed and tunable plasmonic nanostructures. Anal Chem 92, 5708–5716 (2020). doi: 10.1021/acs.analchem.9b04183

    CrossRef Google Scholar

    [35] Chen C, Li Y, Kerman S, Neutens P, Willems K et al. High spatial resolution nanoslit SERS for single-molecule nucleobase Sensing. Nat Commun 9, 1733 (2018). doi: 10.1038/s41467-018-04118-7

    CrossRef Google Scholar

    [36] Huang JA, Mousavi MZ, Giovannini G, Zhao YQ, Hubarevich A et al. Multiplexed discrimination of single amino acid residues in polypeptides in a single SERS hot spot. Angew Chem Int Ed 59, 11423–11431 (2020). doi: 10.1002/anie.202000489

    CrossRef Google Scholar

    [37] Lim WY, Goh CH, Thevarajah TM, Goh BT, Khor SM. Using SERS-based microfluidic paper-based device (μPAD) for calibration-free quantitative measurement of AMI cardiac biomarkers. Biosens Bioelectron 147, 111792 (2020). doi: 10.1016/j.bios.2019.111792

    CrossRef Google Scholar

    [38] Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ et al. A vicious cycle of β amyloid–dependent neuronal hyperactivation. Science 365, 559–565 (2019). doi: 10.1126/science.aay0198

    CrossRef Google Scholar

    [39] Zhou R, Yang GH, Guo XF, Zhou Q, Lei JL et al. Recognition of the amyloid precursor protein by human γ-secretase. Science 363, 708 (2019). doi: 10.1126/science.aaw0930

    CrossRef Google Scholar

    [40] Huang CC, Isidoro C. Raman spectrometric detection methods for early and non-invasive diagnosis of alzheimer’s disease. J Alzheimers Dis 57, 1145–1156 (2017). doi: 10.3233/JAD-161238

    CrossRef Google Scholar

  • Supplementary information for Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog