Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.3115/1218955.1219025dlproceedingsArticle/Chapter ViewAbstractPublication PagesaclConference Proceedingsconference-collections
Article
Free access

An alternative method of training probabilistic LR parsers

Published: 21 July 2004 Publication History

Abstract

We discuss existing approaches to train LR parsers, which have been used for statistical resolution of structural ambiguity. These approaches are nonoptimal, in the sense that a collection of probability distributions cannot be obtained. In particular, some probability distributions expressible in terms of a context-free grammar cannot be expressed in terms of the LR parser constructed from that grammar, under the restrictions of the existing approaches to training of LR parsers. We present an alternative way of training that is provably optimal, and that allows all probability distributions expressible in the context-free grammar to be carried over to the LR parser. We also demonstrate empirically that this kind of training can be effectively applied on a large treebank.

References

[1]
S. Billot and B. Lang. 1989. The structure of shared forests in ambiguous parsing. In 27th Annual Meeting of the Association for Computational Linguistics, pages 143--151, Vancouver, British Columbia, Canada, June.
[2]
T. Briscoe and J. Carroll. 1993. Generalized probabilistic LR parsing of natural language (corpora) with unification-based grammars. Computational Linguistics, 19(1):25--59.
[3]
Z. Chi and S. Geman. 1998. Estimation of probabilistic context-free grammars. Computational Linguistics, 24(2):299--305.
[4]
Z. Chi. 1999. Statistical properties of probabilistic context-free grammars. Computational Linguistics, 25(1):131--160.
[5]
M. V. Chitrao and R. Grishman. 1990. Statistical parsing of messages. In Speech and Natural Language, Proceedings, pages 263--266, Hidden Valley, Pennsylvania, June.
[6]
M. Collins. 2001. Parameter estimation for statistical parsing models: Theory and practice of distribution-free methods. In Proceedings of the Seventh International Workshop on Parsing Technologies, Beijing, China, October.
[7]
M. A. Harrison. 1978. Introduction to Formal Language Theory. Addison-Wesley.
[8]
K. Inui, V. Sornlertlamvanich, H. Tanaka, and T. Tokunaga. 2000. Probabilistic GLR parsing. In H. Bunt and A. Nijholt, editors, Advances in Probabilistic and other Parsing Technologies, chapter 5, pages 85--104. Kluwer Academic Publishers.
[9]
M. Johnson. 1998. PCFG models of linguistic tree representations. Computational Linguistics, 24(4):613--632.
[10]
J. R. Kipps. 1991. GLR parsing in time O(n3). In M. Tomita, editor, Generalized LR Parsing, chapter 4, pages 43--59. Kluwer Academic Publishers.
[11]
B. Lang. 1974. Deterministic techniques for efficient non-deterministic parsers. In Automata, Languages and Programming, 2nd Colloquium, volume 14 of Lecture Notes in Computer Science, pages 255--269, Saarbrücken. Springer-Verlag.
[12]
A. Lavie and M. Tomita. 1993. GLR* -- an efficient noise-skipping parsing algorithm for context free grammars. In Third International Workshop on Parsing Technologies, pages 123--134, Tilburg (The Netherlands) and Durbuy (Belgium), August.
[13]
M.-J. Nederhof and G. Satta. 1996. Efficient tabular LR parsing. In 34th Annual Meeting of the Association for Computational Linguistics, pages 239--246, Santa Cruz, California, USA, June.
[14]
M.-J. Nederhof and G. Satta. 2003. Probabilistic parsing as intersection. In 8th International Workshop on Parsing Technologies, pages 137--148, LORIA, Nancy, France, April.
[15]
M.-J. Nederhof and G. Satta. 2004. Probabilistic parsing strategies. In 42nd Annual Meeting of the Association for Computational Linguistics, Barcelona, Spain, July.
[16]
S.-K. Ng and M. Tomita. 1991. Probabilistic LR parsing for general context-free grammars. In Proc. of the Second International Workshop on Parsing Technologies, pages 154--163, Cancun, Mexico, February.
[17]
T. Ruland. 2000. A context-sensitive model for probabilistic LR parsing of spoken language with transformation-based postprocessing. In The 18th International Conference on Computational Linguistics, volume 2, pages 677--683, Saarbrücken, Germany, July-August.
[18]
J.-A. Sánchez and J.-M. Benedí. 1997. Consistency of stochastic context-free grammars from probabilistic estimation based on growth transformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9):1052--1055, September.
[19]
E. S. Santos. 1972. Probabilistic grammars and automata. Information and Control, 21:27--47.
[20]
S. Sippu and E. Soisalon-Soininen. 1990. Parsing Theory, Vol. II: LR(k) and LL(k) Parsing, volume 20 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag.
[21]
V. Sornlertlamvanich, K. Inui, H. Tanaka, T. Tokunaga, and T. Takezawa. 1999. Empirical support for new probabilistic generalized LR parsing. Journal of Natural Language Processing, 6(3):3--22.
[22]
K.-Y. Su, J.-N. Wang, M.-H. Su, and J.-S. Chang. 1991. GLR parsing with scoring. In M. Tomita, editor, Generalized LR Parsing, chapter 7, pages 93--112. Kluwer Academic Publishers.
[23]
F. Tendeau. 1997. Analyse syntaxique et sémantique avec évaluation d'attributs dans un demi-anneau. Ph.D. thesis, University of Orléans.
[24]
M. Tomita. 1986. Efficient Parsing for Natural Language. Kluwer Academic Publishers.
[25]
J. H. Wright and E. N. Wrigley. 1991. GLR parsing with probability. In M. Tomita, editor, Generalized LR Parsing, chapter 8, pages 113--128. Kluwer Academic Publishers.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image DL Hosted proceedings
ACL '04: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics
July 2004
729 pages

Publisher

Association for Computational Linguistics

United States

Publication History

Published: 21 July 2004

Qualifiers

  • Article

Acceptance Rates

Overall Acceptance Rate 85 of 443 submissions, 19%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)33
  • Downloads (Last 6 weeks)1
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media