Enhancing Security in Social Networks through Machine Learning: Detecting and Mitigating Sybil Attacks with SybilSocNet
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Problem Statement and Research Question
1.3. This Paper’s Significance and Contribution
2. Theoretical Foundation and Sybil Attack Landscape
2.1. Sybil Attacks: Concepts, Core Characteristics, Varieties, and Impact on Network Integrity
2.2. Targeted Networks and Vulnerabilities
2.3. Unleashing Defense Strategies: Safeguarding against Sybil Attacks
2.4. Sybil Detection Algorithms
3. Methodology: Proposed SybilSocNet Algorithm
Algorithm 1: Pseudocode for splitting the data |
Algorithm 2: Pseudocode for the Creation of Matrices |
3.1. ML Terminologies and Methodologies Applied in This Study
3.1.1. Machine Learning
3.1.2. Supervised Learning
3.1.3. Support Vector Machine Algorithm (SVM)
- Data Preparation: As SVM is supervised, labeled data are deployed for training. Instances must be associated with specific classes, where data collection takes various routes like downloading datasets from platforms like Kaggle [64] or customizing existing ones.
- Feature Scaling: SVM gives weight to features based on values where scaling ensures fairness among features. While some features have a larger magnitude, maintaining equitable treatment prevents bias. Scaling methods like standardization and normalization are often employed.
- Kernel Selection: SVM utilizes the kernel trick, mapping data to higher dimensions for easier classification. Kernels are of various types, suited to different data and applications. Optimal kernel choice impacts computational efficiency.
- Training and Optimization: After the kernel is selected, training involves determining the hyperplane position. This necessitates solving an optimization problem, minimizing the cost function while considering margin and regularization factors. Different algorithms, e.g., SMO and quadratic programming can be deployed.
- Testing: SVM can handle classification and regression. In classification, algorithm predictions are compared to known instances. For regression, SVM predicts values based on the point’s distance from the hyperplane.
3.1.4. Random Forest Algorithm
- Dataset preparation: Like prior algorithms, it requires labeled data for training with a dataset consisting of features linked to corresponding classes, e.g., car quality correlates with attributes like make, model, and price.
- Decision tree: This is the creation and grouping of the data via a central tree consisting of smaller decision trees that predict outcomes via the dataset’s distinct portions without all features being related to target outputs to form a diverse set of trees, akin to people uniquely solving problems. Ensemble voting aggregates their solutions to determine the final prediction.
- Trees’ feature selection: Different randomly chosen features are assigned to each tree, to curb overfitting.
- Bootstrapping: This involves the newly created dataset’s data samples, generating variations for each tree to avoid uniformity. Bootstrapping introduces randomness, yielding a diverse array of perspectives on the problem, crucial to preventing overfitting (Figure 7).
- Output Prediction: The algorithm predicts the output, either class for classification or value for regression. All decision trees contribute predictions, and a voting mechanism selects the majority class for classification or the average output for regression.
4. Data Analysis
4.1. Steps, Results, and Validation
- Element I00: True positives for non-Sybil instances, a value representing legitimate nodes correctly detected by the algorithm as such.
- Element I01: False positives for Sybil instances, signifying nodes falsely labeled as Sybil by the algorithm. Ideally, this value is minimal or zero, preventing the mislabeling of legitimate nodes as Sybil.
- Element I10: Sybil nodes undetected by the algorithm. The general aim is to keep this count to a minimum to ensure Sybil detection.
- Element I11: Sybil instances’ true positives, indicating correctly identified Sybil nodes.
4.2. Data Overview
5. Conclusions, Limitations, and Future Recommendations
5.1. Conclusions
5.2. Limitations
5.3. Future Research Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- numbersArranged0.txt,Nearest Neighbors,699,0,38,320,0.96404919
- numbersArranged0.txt: The file name of the first matrix number zero.
- Nearest Neighbors: The type of machine learning algorithm being used, in this case, KNN.
- 699: The number of true positives for Sybil nodes.
- 0: The number of false positives.
- 38: The number of false negatives.
- 320: The number of true positives for legitimate nodes.
- 0.9640491958372753: This is the accuracy of KNN on the first matrix.
- numbersArranged0.txt,Nearest Neighbors,699,0,38,320,0.9640491958372753
- numbersArranged1.txt,Nearest Neighbors,699,0,36,322,0.9659413434247871
- numbersArranged2.txt,Nearest Neighbors,699,0,36,322,0.965941434247871
- numbersArranged3.txt,Nearest Neighbors,699,0,29,329,0.9725638599810785
- numbersArranged4.txt,Nearest Neighbors,699,0,27,331,0.9744560075685903
- numbersArranged5.txt,Nearest Neighbors,699,0,38,320,0.9640491958372753
- numbersArranged6.txt,Nearest Neighbors,700,0,35,322,0.9668874172185431
- numbersArranged7.txt,Nearest Neighbors,700,0,38,319,0.9640491958372753
- 80
- 81
- numbersArranged8.txt,Nearest Neighbors,698,0,41,318,0.9612109744560076
- numbersArranged9.txt,Nearest Neighbors,698,0,30,329,0.9716177861873226
- numbersArranged10.txt,Nearest Neighbors,700,0,35,322,0.9668874172185431
- numbersArranged11.txt,Nearest Neighbors,699,0,36,322,0.9659413434247871
- numbersArranged12.txt,Nearest Neighbors,698,0,36,323,0.9659413434247871
- numbersArranged13.txt,Nearest Neighbors,700,0,28,329,0.9735099337748344
- numbersArranged14.txt,Nearest Neighbors,700,0,28,329,0.9735099337748344
- numbersArranged15.txt,Nearest Neighbors,699,0,37,321,0.9649952696310312
- numbersArranged16.txt,Nearest Neighbors,696,0,30,331,0.9716177861873226
- numbersArranged17.txt,Nearest Neighbors,700,0,37,320,0.9649952696310312
- numbersArranged18.txt,Nearest Neighbors,697,0,36,324,0.9659413434247871
- numbersArranged19.txt,Nearest Neighbors,699,0,36,322,0.9659413434247871
- numbersArranged20.txt,Nearest Neighbors,695,0,31,331,0.9706717123935666
- numbersArranged21.txt,Nearest Neighbors,700,0,37,320,0.9649952696310312
- numbersArranged22.txt,Nearest Neighbors,700,0,30,327,0.9716177861873226
- numbersArranged23.txt,Nearest Neighbors,698,0,41,318,0.9612109744560076
- numbersArranged24.txt,Nearest Neighbors,699,0,29,329,0.9725638599810785
- numbersArranged25.txt,Nearest Neighbors,700,0,28,329,0.9735099337748344
- numbersArranged26.txt,Nearest Neighbors,699,0,27,331,0.9744560075685903
- numbersArranged27.txt,Nearest Neighbors,699,0,32,326,0.9697256385998108
- numbersArranged28.txt,Nearest Neighbors,699,0,34,324,0.967833491012299
- numbersArranged29.txt,Nearest Neighbors,698,0,31,328,0.9706717123935666
- numbersArranged30.txt,Nearest Neighbors,697,0,39,321,0.9631031220435194
- numbersArranged31.txt,Nearest Neighbors,697,0,40,320,0.9621570482497634
- numbersArranged32.txt,Nearest Neighbors,699,0,27,331,0.9744560075685903
- numbersArranged33.txt,Nearest Neighbors,699,0,27,331,0.9744560075685903
- numbersArranged34.txt,Nearest Neighbors,697,0,31,329,0.9706717123935666
- numbersArranged35.txt,Nearest Neighbors,699,0,38,320,0.9640491958372753
- 82
- numbersArranged36.txt,Nearest Neighbors,700,0,33,324,0.9687795648060549
- numbersArranged37.txt,Nearest Neighbors,700,0,29,328,0.9725638599810785
- numbersArranged38.txt,Nearest Neighbors,695,0,40,322,0.9621570482497634
- numbersArranged40.txt,Nearest Neighbors,699,0,35,323,0.9668874172185431
- numbersArranged41.txt,Nearest Neighbors,699,0,36,322,0.9659413434247871
- numbersArranged42.txt,Nearest Neighbors,699,0,36,322,0.9659413434247871
- numbersArranged43.txt,Nearest Neighbors,700,0,34,323,0.967833491012299
- numbersArranged44.txt,Nearest Neighbors,696,0,41,320,0.9612109744560076
- numbersArranged45.txt,Nearest Neighbors,697,0,40,320,0.9621570482497634
- numbersArranged46.txt,Nearest Neighbors,720,0,37,300,0.9649952696310312
- numbersArranged47.txt,Nearest Neighbors,719,0,36,302,0.9659413434247871
- numbersArranged48.txt,Nearest Neighbors,720,0,36,301,0.9659413434247871
- numbersArranged49.txt,Nearest Neighbors,720,0,37,300,0.9649952696310312
- numbersArranged50.txt,Nearest Neighbors,720,0,29,308,0.9725638599810785
- numbersArranged51.txt,Nearest Neighbors,719,0,33,305,0.9687795648060549
- numbersArranged52.txt,Nearest Neighbors,719,0,40,298,0.9621570482497634
- numbersArranged53.txt,Nearest Neighbors,718,0,35,304,0.9668874172185431
- numbersArranged56.txt,Nearest Neighbors,719,0,30,308,0.9716177861873226
- numbersArranged58.txt,Nearest Neighbors,719,0,42,296,0.9602649006622517
- numbersArranged59.txt,Nearest Neighbors,720,0,36,301,0.9659413434247871
- numbersArranged60.txt,Nearest Neighbors,718,0,34,305,0.967833491012299
- numbersArranged61.txt,Nearest Neighbors,719,0,31,307,0.9706717123935666
- numbersArranged62.txt,Nearest Neighbors,720,0,34,303,0.967833491012299
- numbersArranged63.txt,Nearest Neighbors,715,0,31,311,0.9706717123935666
- numbersArranged64.txt,Nearest Neighbors,719,0,33,305,0.9687795648060549
- numbersArranged65.txt,Nearest Neighbors,719,0,35,303,0.9668874172185431
- numbersArranged66.txt,Nearest Neighbors,719,0,29,309,0.9725638599810785
- numbersArranged67.txt,Nearest Neighbors,721,0,36,300,0.9659413434247871
- 83
- numbersArranged68.txt,Nearest Neighbors,716,0,39,302,0.9631031220435194
- numbersArranged69.txt,Nearest Neighbors,720,0,35,302,0.9668874172185431
- numbersArranged70.txt,Nearest Neighbors,721,0,34,302,0.967833491012299
Appendix B
- numbersArranged0.txt,Random Forest,692,7,2,356,0.9914853358561968
- numbersArranged1.txt,Random Forest,694,5,3,355,0.9924314096499527
- numbersArranged2.txt,Random Forest,697,2,5,353,0.9933774834437086
- numbersArranged3.txt,Random Forest,695,4,4,354,0.9924314096499527
- numbersArranged4.txt,Random Forest,693,6,7,351,0.9877010406811731
- numbersArranged5.txt,Random Forest,691,8,2,356,0.9905392620624409
- numbersArranged6.txt,Random Forest,693,7,1,356,0.9924314096499527
- numbersArranged7.txt,Random Forest,695,5,2,355,0.9933774834437086
- numbersArranged8.txt,Random Forest,691,7,6,353,0.9877010406811731
- numbersArranged9.txt,Random Forest,696,2,8,351,0.9905392620624409
- numbersArranged10.txt,Random Forest,697,3,1,356,0.9962157048249763
- numbersArranged11.txt,Random Forest,695,4,2,356,0.9943235572374646
- numbersArranged12.txt,Random Forest,695,3,8,351,0.9895931882686849
- numbersArranged13.txt,Random Forest,695,5,4,353,0.9914853358561968
- numbersArranged14.txt,Random Forest,696,4,2,355,0.9943235572374646
- numbersArranged15.txt,Random Forest,693,6,3,355,0.9914853358561968
- numbersArranged16.txt,Random Forest,691,5,8,353,0.9877010406811731
- numbersArranged17.txt,Random Forest,699,1,1,356,0.9981078524124882
- numbersArranged18.txt,Random Forest,695,2,6,354,0.9924314096499527
- numbersArranged19.txt,Random Forest,698,1,5,353,0.9943235572374646
- numbersArranged20.txt,Random Forest,692,3,8,354,0.9895931882686849
- numbersArranged21.txt,Random Forest,697,3,1,356,0.9962157048249763
- numbersArranged22.txt,Random Forest,697,3,3,354,0.9943235572374646
- numbersArranged23.txt,Random Forest,698,0,5,354,0.9952696310312205
- numbersArranged24.txt,Random Forest,695,4,2,356,0.9943235572374646
- numbersArranged25.txt,Random Forest,697,3,5,352,0.9924314096499527
- numbersArranged26.txt,Random Forest,698,1,7,351,0.9924314096499527
- numbersArranged27.txt,Random Forest,697,2,4,354,0.9943235572374646
- numbersArranged28.txt,Random Forest,696,3,5,353,0.9924314096499527
- numbersArranged29.txt,Random Forest,696,2,5,354,0.9933774834437086
- numbersArranged30.txt,Random Forest,693,4,5,355,0.9914853358561968
- numbersArranged31.txt,Random Forest,691,6,8,352,0.9867549668874173
- numbersArranged32.txt,Random Forest,695,4,4,354,0.9924314096499527
- numbersArranged33.txt,Random Forest,695,4,3,355,0.9933774834437086
- numbersArranged34.txt,Random Forest,695,2,4,356,0.9943235572374646
- numbersArranged35.txt,Random Forest,696,3,4,354,0.9933774834437086
- numbersArranged36.txt,Random Forest,698,2,3,354,0.9952696310312205
- numbersArranged37.txt,Random Forest,698,2,2,355,0.9962157048249763
- numbersArranged38.txt,Random Forest,690,5,7,355,0.988647114474929
- numbersArranged40.txt,Random Forest,692,7,4,354,0.9895931882686849
- numbersArranged41.txt,Random Forest,697,2,2,356,0.9962157048249763
- numbersArranged42.txt,Random Forest,696,3,3,355,0.9943235572374646
- numbersArranged43.txt,Random Forest,694,6,5,352,0.9895931882686849
- numbersArranged44.txt,Random Forest,694,2,5,356,0.9933774834437086
- numbersArranged45.txt,Random Forest,692,5,6,354,0.9895931882686849
- numbersArranged46.txt,Random Forest,713,7,8,329,0.9858088930936613
- numbersArranged47.txt,Random Forest,715,4,6,332,0.9905392620624409
- numbersArranged48.txt,Random Forest,713,7,3,334,0.9905392620624409
- numbersArranged49.txt,Random Forest,719,1,4,333,0.9952696310312205
- numbersArranged50.txt,Random Forest,719,1,4,333,0.9952696310312205
- numbersArranged51.txt,Random Forest,716,3,4,334,0.9933774834437086
- numbersArranged52.txt,Random Forest,711,8,9,329,0.9839167455061495
- numbersArranged53.txt,Random Forest,715,3,6,333,0.9914853358561968
- numbersArranged56.txt,Random Forest,716,3,5,333,0.9924314096499527
- numbersArranged58.txt,Random Forest,713,6,3,335,0.9914853358561968
- numbersArranged59.txt,Random Forest,717,3,4,333,0.9933774834437086
- numbersArranged60.txt,Random Forest,714,4,5,334,0.9914853358561968
- numbersArranged61.txt,Random Forest,715,4,2,336,0.9943235572374646
- numbersArranged62.txt,Random Forest,717,3,8,329,0.9895931882686849
- numbersArranged63.txt,Random Forest,708,7,8,334,0.9858088930936613
- numbersArranged64.txt,Random Forest,719,0,2,336,0.9981078524124882
- numbersArranged65.txt,Random Forest,717,2,7,331,0.9914853358561968
- numbersArranged66.txt,Random Forest,717,2,7,331,0.9914853358561968
- numbersArranged67.txt,Random Forest,717,4,4,332,0.9924314096499527
- numbersArranged68.txt,Random Forest,710,6,7,334,0.9877010406811731
- numbersArranged69.txt,Random Forest,717,3,2,335,0.9952696310312205
- numbersArranged70.txt,Random Forest,718,3,7,329,0.9905392620624409
Appendix C
- numbersArranged0.txt,SVM,689,10,3,355,0.9877010406811731
- numbersArranged1.txt,SVM,699,0,3,355,0.9971617786187322
- numbersArranged2.txt,SVM,674,25,1,357,0.9754020813623463
- numbersArranged3.txt,SVM,699,0,1,357,0.9990539262062441
- numbersArranged4.txt,SVM,693,6,1,357,0.9933774834437086
- numbersArranged5.txt,SVM,686,13,1,357,0.9867549668874173
- numbersArranged6.txt,SVM,697,3,2,355,0.9952696310312205
- numbersArranged7.txt,SVM,699,1,1,356,0.9981078524124882
- numbersArranged8.txt,SVM,696,2,4,355,0.9943235572374646
- numbersArranged9.txt,SVM,692,6,5,354,0.9895931882686849
- numbersArranged10.txt,SVM,700,0,2,355,0.9981078524124882
- numbersArranged11.txt,SVM,699,0,1,357,0.9990539262062441
- numbersArranged12.txt,SVM,694,4,5,354,0.9914853358561968
- numbersArranged13.txt,SVM,699,1,3,354,0.9962157048249763
- numbersArranged14.txt,SVM,697,3,3,354,0.9943235572374646
- numbersArranged15.txt,SVM,696,3,2,356,0.9952696310312205
- numbersArranged16.txt,SVM,689,7,8,353,0.9858088930936613
- numbersArranged17.txt,SVM,699,1,2,355,0.9971617786187322
- numbersArranged18.txt,SVM,697,0,5,355,0.9952696310312205
- numbersArranged19.txt,SVM,699,0,3,355,0.9971617786187322
- numbersArranged20.txt,SVM,695,0,6,356,0.9943235572374646
- numbersArranged21.txt,SVM,698,2,0,357,0.9981078524124882
- numbersArranged22.txt,SVM,700,0,1,356,0.9990539262062441
- numbersArranged23.txt,SVM,698,0,3,356,0.9971617786187322
- numbersArranged24.txt,SVM,694,5,3,355,0.9924314096499527
- numbersArranged25.txt,SVM,699,1,2,355,0.9971617786187322
- numbersArranged26.txt,SVM,699,0,3,355,0.9971617786187322
- numbersArranged27.txt,SVM,699,0,2,356,0.9981078524124882
- numbersArranged28.txt,SVM,698,1,3,355,0.9962157048249763
- numbersArranged29.txt,SVM,698,0,3,356,0.9971617786187322
- numbersArranged30.txt,SVM,678,19,12,348,0.9706717123935666
- numbersArranged31.txt,SVM,694,3,4,356,0.9933774834437086
- numbersArranged32.txt,SVM,698,1,2,356,0.9971617786187322
- numbersArranged33.txt,SVM,699,0,3,355,0.9971617786187322
- numbersArranged34.txt,SVM,694,3,7,353,0.9905392620624409
- numbersArranged35.txt,SVM,699,0,2,356,0.9981078524124882
- numbersArranged36.txt,SVM,698,2,2,355,0.9962157048249763
- numbersArranged37.txt,SVM,698,2,2,355,0.9962157048249763
- numbersArranged38.txt,SVM,693,2,9,353,0.9895931882686849
- numbersArranged40.txt,SVM,699,0,2,356,0.9981078524124882
- numbersArranged41.txt,SVM,699,0,2,356,0.9981078524124882
- numbersArranged42.txt,SVM,698,1,3,355,0.9962157048249763
- numbersArranged43.txt,SVM,699,1,4,353,0.9952696310312205
- numbersArranged44.txt,SVM,696,0,4,357,0.9962157048249763
- numbersArranged45.txt,SVM,697,0,4,356,0.9962157048249763
- numbersArranged46.txt,SVM,712,8,4,333,0.988647114474929
- numbersArranged47.txt,SVM,719,0,2,336,0.9981078524124882
- numbersArranged48.txt,SVM,720,0,1,336,0.9990539262062441
- numbersArranged49.txt,SVM,716,4,3,334,0.9933774834437086
- numbersArranged50.txt,SVM,720,0,1,336,0.9990539262062441
- numbersArranged51.txt,SVM,717,2,2,336,0.9962157048249763
- numbersArranged52.txt,SVM,717,2,2,336,0.9962157048249763
- numbersArranged53.txt,SVM,718,0,3,336,0.9971617786187322
- numbersArranged56.txt,SVM,714,5,7,331,0.988647114474929
- numbersArranged58.txt,SVM,719,0,2,336,0.9981078524124882
- numbersArranged59.txt,SVM,719,1,1,336,0.9981078524124882
- numbersArranged60.txt,SVM,705,13,11,328,0.9772942289498581
- numbersArranged61.txt,SVM,715,4,2,336,0.9943235572374646
- numbersArranged62.txt,SVM,720,0,1,336,0.9990539262062441
- numbersArranged63.txt,SVM,700,15,8,334,0.978240302743614
- numbersArranged64.txt,SVM,700,19,2,336,0.9801324503311258
- numbersArranged65.txt,SVM,718,1,2,336,0.9971617786187322
- numbersArranged66.txt,SVM,719,0,4,334,0.9962157048249763
- numbersArranged67.txt,SVM,721,0,0,336,1.0
- numbersArranged68.txt,SVM,707,9,8,333,0.9839167455061495
- numbersArranged69.txt,SVM,719,1,1,336,0.9981078524124882
- numbersArranged70.txt,SVM,718,3,3,333,0.9943235572374646
References
- Saxena, G.D.; Dinesh, G.; David, D.S.; Tiwari, M.; Tiwari, T.; Monisha, M.; Chauhan, A. Addressing the Distinct Security Vulnerabilities Typically Emerge on the Mobile Ad-Hoc Network Layer. NeuroQuantology 2023, 21, 169–178. [Google Scholar]
- Manju, V. Sybil attack prevention in wireless sensor network. Int. J. Comput. Netw. Wirel. Mob. Commun. (IJCNWMC) 2014, 4, 125–132. [Google Scholar]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Rahbari, M.; Jamali, M.A.J. Efficient detection of Sybil attack based on cryptography in VANET. arXiv 2011, arXiv:1112.2257. [Google Scholar] [CrossRef]
- Chang, W.; Wu, J. A Survey of Sybil Attacks in Networks. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=97dd43eabe4789e39b8290cf43daa513483aa4c7 (accessed on 9 September 2024).
- Balachandran, N.; Sanyal, S. A review of techniques to mitigate sybil attacks. arXiv 2012, arXiv:1207.2617. [Google Scholar]
- Platt, M.; McBurney, P. Sybil in the haystack: A comprehensive review of blockchain consensus mechanisms in search of strong Sybil attack resistance. Algorithms 2023, 16, 34. [Google Scholar] [CrossRef]
- Douceur, J.R. The sybil attack. In Peer-to-Peer Systems; Springer: Berlin/Heidelberg, Germany, 2002; pp. 251–260. [Google Scholar]
- Tran, D.N.; Min, B.; Li, J.; Subramanian, L. Sybil-Resilient Online Content Voting. In Proceedings of the SDI’09: 6th USENIX Symposium on Networked Systems Design and Implementation, Boston, MA, USA, 22–24 April 2009; Volume 9, pp. 15–28. [Google Scholar]
- Cárdenas-Haro, J.A.; Konjevod, G. Detecting sybil nodes in static and dynamic networks. In Proceedings of the On the Move to Meaningful Internet Systems, OTM 2010: Confederated International Conferences: CoopIS, IS, DOA and ODBASE, Hersonissos, Crete, Greece, 25–29 October 2010; Proceedings, Part II. pp. 894–917. [Google Scholar]
- Misra, S.; Tayeen, A.S.M.; Xu, W. SybilExposer: An effective scheme to detect Sybil communities in online social networks. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Fong, P.W. Preventing Sybil attacks by privilege attenuation: A design principle for social network systems. In Proceedings of the 2011 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 22–25 May 2011; pp. 263–278. [Google Scholar]
- Margolin, N.B.; Levine, B.N. Informant: Detecting sybils using incentives. In Proceedings of the International Conference on Financial Cryptography and Data Security, Scarborough, Trinidad and Tobago, 12–16 February 2007; pp. 192–207. [Google Scholar]
- Du, W.; Deng, J.; Han, Y.S.; Varshney, P.K.; Katz, J.; Khalili, A. A pairwise key predistribution scheme for wireless sensor networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 2005, 8, 228–258. [Google Scholar] [CrossRef]
- Lu, H.; Gong, D.; Li, Z.; Liu, F.; Liu, F. SybilHP: Sybil Detection in Directed Social Networks with Adaptive Homophily Prediction. Appl. Sci. 2023, 13, 5341. [Google Scholar] [CrossRef]
- Patel, S.T.; Mistry, N.H. A review: Sybil attack detection techniques in WSN. In Proceedings of the 2017 4th International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 24–25 February 2017; pp. 184–188. [Google Scholar]
- Almesaeed, R.; Al-Salem, E. Sybil attack detection scheme based on channel profile and power regulations in wireless sensor networks. Wirel. Netw. 2022, 28, 1361–1374. [Google Scholar] [CrossRef]
- Batchelor, B.G. Pattern Recognition: Ideas in Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kafetzis, D.; Vassilaras, S.; Vardoulias, G.; Koutsopoulos, I. Software-defined networking meets software-defined radio in mobile ad hoc networks: State of the art and future directions. IEEE Access 2022, 10, 9989–10014. [Google Scholar] [CrossRef]
- Cui, Z.; Fei, X.; Zhang, S.; Cai, X.; Cao, Y.; Zhang, W.; Chen, J. A hybrid blockchain-based identity authentication scheme for multi-WSN. IEEE Trans. Serv. Comput. 2020, 13, 241–251. [Google Scholar] [CrossRef]
- Saraswathi, R.V.; Sree, L.P.; Anuradha, K. Support vector based regression model to detect Sybil attacks in WSN. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 4090–4096. [Google Scholar]
- Choy, G.; Khalilzadeh, O.; Michalski, M.; Do, S.; Samir, A.E.; Pianykh, O.S.; Geis, J.R.; Pandharipande, P.V.; Brink, J.A.; Dreyer, K.J. Current applications and future impact of machine learning in radiology. Radiology 2018, 288, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Tong, F.; Zhang, Z.; Zhu, Z.; Zhang, Y.; Chen, C. A novel scheme based on coarse-grained localization and fine-grained isolation for defending against Sybil attack in low power and lossy networks. Asian J. Control 2023. [Google Scholar] [CrossRef]
- Nayyar, A.; Rameshwar, R.; Solanki, A. Internet of Things (IoT) and the digital business environment: A standpoint inclusive cyber space, cyber crimes, and cybersecurity. In The Evolution of Business in the Cyber Age; Apple Academic Press: New York, NY, USA, 2020; Volume 10, ISBN 9780429276484. [Google Scholar]
- Alsafery, W.; Rana, O.; Perera, C. Sensing within smart buildings: A survey. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- NBC News. NBC News Home. 2023. Available online: https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed on 28 February 2024).
- Vincent, J. Emotion and the mobile phone. In Cultures of Participation: Media Practices, Politics and Literacy; Peter Lang: Lausanne, Switzerland, 2011; pp. 95–109. [Google Scholar]
- Xiao, L.; Greenstein, L.J.; Mandayam, N.B.; Trappe, W. Channel-based detection of sybil attacks in wireless networks. IEEE Trans. Inf. Forensics Secur. 2009, 4, 492–503. [Google Scholar] [CrossRef]
- Samuel, S.J.; Dhivya, B. An efficient technique to detect and prevent Sybil attacks in social network applications. In Proceedings of the 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 5–7 March 2015; pp. 1–3. [Google Scholar]
- Arif, M.; Wang, G.; Bhuiyan, M.Z.A.; Wang, T.; Chen, J. A survey on security attacks in VANETs: Communication, applications and challenges. Veh. Commun. 2019, 19, 100179. [Google Scholar] [CrossRef]
- Iswanto, I.; Tulus, T.; Sihombing, P. Comparison of distance models on K-Nearest Neighbor algorithm in stroke disease detection. Appl. Technol. Comput. Sci. J. 2021, 4, 63–68. [Google Scholar] [CrossRef]
- Helmi, Z.; Adriman, R.; Arif, T.Y.; Walidainy, H.; Fitria, M. Sybil Attack Prediction on Vehicle Network Using Deep Learning. J. RESTI (Rekayasa Sist. Dan Teknol. Inf.) 2022, 6, 499–504. [Google Scholar] [CrossRef]
- Ben-Hur, A.; Ong, C.S.; Sonnenburg, S.; Schölkopf, B.; Rätsch, G. Support vector machines and kernels for computational biology. PLoS Comput. Biol. 2008, 4, e1000173. [Google Scholar] [CrossRef]
- Hu, L.Y.; Huang, M.W.; Ke, S.W.; Tsai, C.F. The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus 2016, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Lim, J.; Kim, D.k.; Yang, S.; Yoon, M. An approach to mitigating sybil attack in wireless networks using zigBee. In Proceedings of the 2008 10th International Conference on Advanced Communication Technology, Phoenix Park, Republic of Korea, 17–20 February 2008; Volume 2, pp. 1005–1009. [Google Scholar]
- Eschenauer, L.; Gligor, V.D. A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM Conference on Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 41–47. [Google Scholar]
- Dhamodharan, U.S.R.K.; Vayanaperumal, R. Detecting and preventing sybil attacks in wireless sensor networks using message authentication and passing method. Sci. World J. 2015, 2015, 841267. [Google Scholar] [CrossRef] [PubMed]
- Ammari, A.; Bensalem, A. Fault Tolerance and VANET (Vehicular Ad-Hoc Network). Ph.D. Thesis, University of M’sila, M’sila, Algeria, 2022. [Google Scholar]
- Quevedo, C.H.; Quevedo, A.M.; Campos, G.A.; Gomes, R.L.; Celestino, J.; Serhrouchni, A. An intelligent mechanism for sybil attacks detection in vanets. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Yu, H.; Gibbons, P.B.; Kaminsky, M.; Xiao, F. Sybillimit: A near-optimal social network defense against sybil attacks. In Proceedings of the 2008 IEEE Symposium on Security and Privacy (sp 2008), Oakland, CA, USA, 18–21 May 2008; pp. 3–17. [Google Scholar]
- Abbas, S.; Merabti, M.; Llewellyn-Jones, D.; Kifayat, K. Lightweight sybil attack detection in manets. IEEE Syst. J. 2012, 7, 236–248. [Google Scholar] [CrossRef]
- Newsome, J.; Shi, E.; Song, D.; Perrig, A. The sybil attack in sensor networks: Analysis & defenses. In Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, CA, USA, 26–27 April 2004; pp. 259–268. [Google Scholar]
- Chen, Y.; Yang, J.; Trappe, W.; Martin, R.P. Detecting and localizing identity-based attacks in wireless and sensor networks. IEEE Trans. Veh. Technol. 2010, 59, 2418–2434. [Google Scholar] [CrossRef]
- Shetty, N.P.; Muniyal, B.; Anand, A.; Kumar, S. An enhanced sybil guard to detect bots in online social networks. J. Cyber Secur. Mobil. 2022, 11, 105–126. [Google Scholar] [CrossRef]
- Mounica, M.; Vijayasaraswathi, R.; Vasavi, R. RETRACTED: Detecting Sybil Attack In Wireless Sensor Networks Using Machine Learning Algorithms. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1042, 012029. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, L.; Gong, N.Z. SybilSCAR: Sybil detection in online social networks via local rule based propagation. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Twitter Follower-Followee Graph. Labeled with Benign/Sybil. 2022. Available online: https://figshare.com/articles/dataset/Twitter_follower-followee_graph_labeled_with_benign_Sybil/20057300 (accessed on 9 September 2024).
- Demirbas, M.; Song, Y. An RSSI-based scheme for sybil attack detection in wireless sensor networks. In Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’06), Buffalo, NY, USA, 26–29 June 2006; p. 5. [Google Scholar]
- Machine LEarning Research. Apple’s Siri Voice Recognition Software. 2023. Available online: https://machinelearning.apple.com/research/hey-siri (accessed on 21 February 2024).
- Alexa. Amazon’s Alexa Voice Recognition Software. 2023. Available online: https://developer.amazon.com/ (accessed on 21 February 2024).
- Kak, S. A three-stage quantum cryptography protocol. Found. Phys. Lett. 2006, 19, 293–296. [Google Scholar] [CrossRef]
- Sahami, M.; Dumais, S.; Heckerman, D.; Horvitz, E. A Bayesian approach to filtering junk e-mail. In Learning for Text Categorization: Papers from the 1998 Workshop; Citeseer: Madison, WI, USA, 1998; Volume 62, pp. 98–105. [Google Scholar]
- Schiappa, M.C.; Rawat, Y.S.; Shah, M. Self-supervised learning for videos: A survey. ACM Comput. Surv. 2023, 55, 1–37. [Google Scholar] [CrossRef]
- Zamsuri, A.; Defit, S.; Nurcahyo, G.W. Classification of Multiple Emotions in Indonesian Text Using The K-Nearest Neighbor Method. J. Appl. Eng. Technol. Sci. (JAETS) 2023, 4, 1012–1021. [Google Scholar] [CrossRef]
- Gupta, M.; Judge, P.; Ammar, M. A reputation system for peer-to-peer networks. In Proceedings of the 13th International Workshop on Network and Operating Systems Support for Digital Audio and Video, Monterey, CA, USA, 1–3 June 2003; pp. 144–152. [Google Scholar]
- Michalski, R.S.; Stepp, R.E.; Diday, E. A recent advance in data analysis: Clustering objects into classes characterized by conjunctive concepts. In Progress in Pattern Recognition; Elsevier: Amsterdam, The Netherlands, 1981; pp. 33–56. [Google Scholar]
- Medjahed, S.A.; Saadi, T.A.; Benyettou, A. Breast cancer diagnosis by using k-nearest neighbor with different distances and classification rules. Int. J. Comput. Appl. 2013, 62, 1–5. [Google Scholar]
- Swamynathan, G.; Almeroth, K.C.; Zhao, B.Y. The design of a reliable reputation system. Electron. Commer. Res. 2010, 10, 239–270. [Google Scholar] [CrossRef]
- Valarmathi, M.; Meenakowshalya, A.; Bharathi, A. Robust Sybil attack detection mechanism for Social Networks-a survey. In Proceedings of the 2016 3rd International conference on advanced computing and communication systems (ICACCS), Coimbatore, India, 22–23 January 2016; Volume 1, pp. 1–5. [Google Scholar]
- Vasudeva, A.; Sood, M. Survey on sybil attack defense mechanisms in wireless ad hoc networks. J. Netw. Comput. Appl. 2018, 120, 78–118. [Google Scholar] [CrossRef]
- Yu, H.; Kaminsky, M.; Gibbons, P.B.; Flaxman, A. Sybilguard: Defending against sybil attacks via social networks. In Proceedings of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Pisa, Italy, 11–15 September 2006; pp. 267–278. [Google Scholar]
- Yuan, D.; Miao, Y.; Gong, N.Z.; Yang, Z.; Li, Q.; Song, D.; Wang, Q.; Liang, X. Detecting fake accounts in online social networks at the time of registrations. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; pp. 1423–1438. [Google Scholar]
- Zhang, K.; Liang, X.; Lu, R.; Shen, X. Sybil attacks and their defenses in the internet of things. IEEE Internet Things J. 2014, 1, 372–383. [Google Scholar] [CrossRef]
- Kaggle. Level Up with the Largest AI & ML Community. 2023. Available online: https://www.kaggle.com/ (accessed on 25 February 2024).
- Jain, N.; Jana, P.K. LRF: A logically randomized forest algorithm for classification and regression problems. Expert Syst. Appl. 2023, 213, 119225. [Google Scholar] [CrossRef]
- Jethava, G.; Rao, U.P. User behavior-based and graph-based hybrid approach for detection of sybil attack in online social networks. Comput. Electr. Eng. 2022, 99, 107753. [Google Scholar] [CrossRef]
K Nearest Neighbor | Support Vector Machine | Random Forest | |
---|---|---|---|
Mean Value | 96.759 | 99.394 | 99.213 |
Std. Dev. | 0.0038 | 0.0061 | 0.0029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Haro, J.A.; Salem, M.; Aldaco-Gastélum, A.N.; López-Avitia, R.; Dawson, M. Enhancing Security in Social Networks through Machine Learning: Detecting and Mitigating Sybil Attacks with SybilSocNet. Algorithms 2024, 17, 442. https://doi.org/10.3390/a17100442
Cárdenas-Haro JA, Salem M, Aldaco-Gastélum AN, López-Avitia R, Dawson M. Enhancing Security in Social Networks through Machine Learning: Detecting and Mitigating Sybil Attacks with SybilSocNet. Algorithms. 2024; 17(10):442. https://doi.org/10.3390/a17100442
Chicago/Turabian StyleCárdenas-Haro, José Antonio, Mohamed Salem, Abraham N. Aldaco-Gastélum, Roberto López-Avitia, and Maurice Dawson. 2024. "Enhancing Security in Social Networks through Machine Learning: Detecting and Mitigating Sybil Attacks with SybilSocNet" Algorithms 17, no. 10: 442. https://doi.org/10.3390/a17100442