Spatial Distribution, Pollution Characteristics, and Health Risk Assessment of Heavy Metals in Soils from a Typical Agricultural County, East China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Statistical Analysis
2.4. Evaluation Method
2.4.1. The Geoaccumulation Index Method and Its Improvement
2.4.2. Potential Ecological Risk Index
2.4.3. Health Risk Assessment
3. Results and Discussion
3.1. Heavy Metal Contents
3.2. Correlation and Spatial Distribution of Heavy Metals
3.3. Levels of Heavy Metal Contamination
3.4. Risk Assessment of Heavy Metals
3.4.1. Potential Ecological Risk Assessment
3.4.2. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, P.D.; Alloway, B.J.; Dourado, A.M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut. 2006, 144, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Díaz, R.O.; Fonticiella, M.D.; Arado López, J.O.; Borrell Munoz, J.L.; D’Alessandro, R.K.; López, P.N. Spatial distribution and contamination assessment of heavy metals in urban topsoils from Las Tunas City, Cuba. Bull. Environ. Contam. Toxicol. 2013, 91, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Balkhair, K.S.; Ashraf, M.A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, 32–44. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, R.; Gao, X.S. Spatial Characteristics and Potentical Risk Factor of Heavy Metals in Cultivated Land in the Transition Zone of a Mountain Plain. Environ. Sci. 2022, 43, 946–956. [Google Scholar] [CrossRef]
- Ma, Q.H.; Zhang, G.H.; Geng, R. Present condition analysis of sloping farmland soil quality in the eastern water erosion zone of China. Sci. Soil Water Conserv. 2017, 15, 36–42. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the PRC; Ministry of Land and Resources of the PRC. National Survey Bulletin on Soil Pollution; Ministry of Environmental Protection of the PRC: Beijing, China; Ministry of Land and Resources of the PRC: Beijing, China, 2014.
- Food and Agriculture Organization of the United Nations (FAO); United Nations Environment Programme (UNEP). Global Assessment of Soil Pollution: Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Zhao, D.J.; Wang, X.Q. Distribution, sources and potential ecological risk of heavy metals in the floodplain soils of the karst area of Yunnan, Guizhou, Guangxi. China Environ. Sci. 2020, 40, 1609–1619. [Google Scholar] [CrossRef]
- US EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; Office of Emergency and Remedial Response: Washington, DC, USA, 2002; pp. 4–24. [Google Scholar]
- Chai, L.; Wang, X.; Ma, L.; Cheng, Z.X.; Su, L.M.; Wang, Y.H. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models. China Environ. Sci. 2020, 40, 3919–3929. [Google Scholar] [CrossRef]
- Chi, Q.H.; Yan, M.C. Handbook of Elemental Abundance for Applied Geochemistry; Geological Press: Beijing, China, 2007. [Google Scholar]
- Zhang, F.G.; Peng, M.; Wang, H.Y.; Ma, H.H.; Cheng, H.X. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern China. Environ. Sci. 2020, 41, 4197–4209. [Google Scholar] [CrossRef]
- Jia, Z.; Li, S.; Wang, L. Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Sci. Rep. 2018, 8, 3256. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef]
- Miao, R.Q.; Yan, Y.F.; Bai, Y.; Deng, A. Assessment of heavy metal contamination of soil in Kunming. Adv. Mater. Res. 2015, 1092, 774–779. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, J.; Duan, R.; Lu, S.; Hou, Z.; Yang, F.; Peng, M.; Zong, Q.; Shi, Z.; Yu, L. Ecological Health Risk Assessment and Source Identification of Heavy Metals in Surface Soil Based on a High Geochemical Background: A Case Study in Southwest China. Toxics 2022, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Canpolat, Ö.; Varol, M.; Okan, Ö.Ö.; Eriş, K.K.; Çağlar, M. A comparison of trace element concentrations in surface and deep water of the Keban Dam Lake (Turkey) and associated health risk assessment. Environ. Res. 2020, 190, 110012. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.R.; Xia, B.C.; Fan, C.; Zhao, P.; Shen, S.L. Human health risk from soilheavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci. Total Environ. 2012, 417–418, 45–54. [Google Scholar] [CrossRef]
- Rutigliano, F.A.; Marzaioli, R.; De Crescenzo, S.; Trifuoggi, M. Human health risk from consumption of two common crops grown in polluted soils. Sci. Total Environ. 2019, 691, 195–204. [Google Scholar] [CrossRef]
- Ekino, S.; Susa, M.; Ninomiya, T.; Imamura, K.; Kitamura, T. Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. J. Neurol. Sci. 2007, 15, 131–144. [Google Scholar] [CrossRef]
- Hara, N.; Saito, H.; Takahashi, K.; Takeda, M. Lower urinary tract symptoms in patients with Niigata Minamata disease: A case-control study 50 years after methyl mercury pollution. Int. J. Urol. 2013, 20, 610–615. [Google Scholar] [CrossRef]
- Aziz, R.; Rafiq, M.T.; Li, T.; Liu, D.; He, Z.; Stoffella, P.J.; Sun, K.; Xiao, Y. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702). J. Agric. Food Chem. 2015, 63, 3599–3608. [Google Scholar] [CrossRef]
- Pei, N.; Liang, X.F.; Qin, X.; Zhao, L.J.; Huang, Q.; Xu, Y.; Sun, Y.B. Remediation and persistent stability effects of sepiolite on cadmium-contaminated paddy soil. J. Agro-Environ. Sci. 2022, 41, 0277–0284. [Google Scholar] [CrossRef]
- Hu, Y.; He, K.; Sun, Z.; Chen, G.; Cheng, H. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. J. Hazard. Mater. 2020, 391, 122244. [Google Scholar] [CrossRef]
- Varol, M.; Gündüz, K.; Sünbül, M.R. Pollution status, potential sources and health risk assessment of arsenic and trace metals in agricultural soils: A case study in Malatya province, Turkey. Environ. Res. 2021, 202, 111806. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, Z.H.; Niu, X.K.; Zhang, D.; Pan, B. Health Risk Assessment of Soil Heavy Metals in a Small Watershed of a Mining Area in Yunnan. Environ. Sci. 2022, 43, 936–945. [Google Scholar] [CrossRef]
- Wei, R.P.; Wang, X.; Tang, W.L.; Yang, Y.; Yang, L. Bioaccumulations and potential human health risks assessment of heavy metals in ppk-expressing transgenic rice. Sci. Total Environ. 2020, 710, 136496. [Google Scholar] [CrossRef]
- Yu, L.; Wan, F.; Fan, H.; Kang, G.; Liu, H.; Wang, D.; Xu, J. Spatial Distribution, Source Apportionment, and Ecological Risk Assessment of Soil Heavy Metals in Jianghugongmi Producing Area, Shandong Province. Environ. Sci. 2022, 43, 307–319. [Google Scholar] [CrossRef]
- Ju, T.N.; Lei, M. Geo-accumulation Index Method to Optimize the Evalution Method of Polymetallic Environment Quality: Taking Developed Agricultural Areas as an Example. Environ. Sci. 2022, 43, 957–964. [Google Scholar] [CrossRef]
- Guillén, M.T.; Delgado, J.; Albanese, S.; Nieto, J.M.; Lima, A.; Vivo, B.D. Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). J. Geochem. Explor. 2012, 119, 32–43. [Google Scholar] [CrossRef]
- Zhu, D.; Wei, Y.; Zhao, Y.; Wang, Q.; Han, J. Heavy metal pollution and ecological risk assessment of the agriculture soil in xunyang mining area, Shaanxi province, northwestern China. Bull. Environ. Contam. Toxicol. 2018, 101, 178–184. [Google Scholar] [CrossRef]
- Zhang, G.S.; Jia, X.M.; Xiao-Hang, M.; Qian, Z.; Shi, C.Y.; Zhang, D.F. The warning research of soil enzyme activities on heavy metal-contamination of brown earth in Shandong. Plant Nutr. Fertil. Sci. 2004, 10, 272–276. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, H.J.; Wang, L.L. Analysis of Heavy Metal Sources for Vegetable Soils from Shandong Province, China. Agric. Sci. China 2011, 10, 11. [Google Scholar] [CrossRef]
- Zhang, F.; Chang, C.P.; Li, J.; Song, S.; Cai, W.J.; Zhao, G.S.; Li, F.D. Health risk assessment of heavy metals in groundwater in rural area of Jiaodong Peninsula:a case study in Laiyang City, Shandong Province. Environ. Sci. Technol. 2013, 36, 180–186. [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Krzysztof, L.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Zhuo, H.; Wang, X.; Liu, H.; Fu, S.; Ren, L. Source analysis and risk assessment of heavy metals in development zones: A case study in rizhao, china. Environ. Geochem. Health 2020, 42, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Meng, R.H.; Dai, H.X.; Hong, Q.Y.; Yan, Q.H.; Liu, Y.T.; Wang, H.T.; Chen, T. Evaluation of heavy metals pollution in surface sediments using an improved geo-accumulation index method. J. Agro-Environ. Sci. 2019, 38, 2157–2164. [Google Scholar] [CrossRef]
- Nemerow, N. Scientific Stream Pollution Analysis; Scripta Book Co.: Washington, DC, USA, 1974. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Xiang, Y.; Wang, Q.; Yang, L. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J. Earth Sci. 2008, 19, 230–241. [Google Scholar] [CrossRef]
- Mungai, T.M.; Owino, A.A.; Makokha, V.A.; Gao, Y.; Yan, X.; Wang, J. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa. Environ. Sci. Pollut. Res. Int. 2016, 23, 18533–18541. [Google Scholar] [CrossRef]
- Long, Z.J.; Huang, Y.; Zhang, W.; Shi, Z.L.; Yu, D.M.; Chen, Y.; Liu, C.; Wan, R. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ. Monit. Assess. 2021, 193, 20. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J. In situ relationships between spatial–temporal variations in potential ecological risk indexes for metals and the short-term effects on periphyton in a macrophyte-dominated lake: A comparison of structural and functional metrics. Ecotoxicology 2014, 23, 553–566. [Google Scholar] [CrossRef]
- Ferreira, B.L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- Li, Y.W.; Wang, J.; Ju, T.Z.; Wang, L.N.; Zhang, S.N.; Zha, X.H. Heavy metal pollution characteristics and human health risk assessment in soils from different functional areas of Baiyin, Gansu, China. Chin. J. Ecol. 2017, 36, 1408–1418. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection. Chinese Population Exposure Parameter Manual. Adult Volume; China Environmental Science Press: Beijing, China, 2013.
- US EPA. Risk Assessment Guidance for Superfund Volume Ⅰ Human Health Evaluation Manual (Part A); Office of Emergency and Remedial Response: Washington DC, USA, 1989.
- US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final; Office of Emergency and Remedial Response: Washington DC, USA, 2004.
- US EPA. Exposure Factors Handbook: 2011 Edition; Office of Health and Environmental Assessment: Washington, DC, USA, 2011; [EPA/600/R-09/052F].
- Duan, X.L. Exposure Factors Handbook of Chinese Population; China Environmental Science Press: Beijing, China, 2013. [Google Scholar]
- Yu, L.; Zhang, F.; Zang, K.; He, L.; Wan, F.; Liu, H.; Zhang, X.; Shi, Z. Potential Ecological Risk Assessment of Heavy Metals in Cultivated Land Based on Soil Geochemical Zoning: Yishui County, North China Case Study. Water 2021, 13, 3322. [Google Scholar] [CrossRef]
- Wilding, L.P. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys; PUDOC: Wageningen, The Netherlands, 1985; pp. 166–194. [Google Scholar]
- Ju, T.N.; Wu, X.; Shi, H.D.; Gao, F.J.; Li, X.Z.; Wang, Y.R.; Luan, T.; Fan, P. Heavy metal pollution and ecological risk assessment of arable land soil in Haigou small watershed. J. Environ. Eng. Technol. 2018, 8, 556–562. [Google Scholar] [CrossRef]
- Sun, G.J.; Li, W.H.; Zhu, C.G. Spatial variation analysis of topsoil bulk density in the Yili Valley, Xin jiang. Resour. Sci. 2016, 38, 1222–1228. [Google Scholar] [CrossRef]
- Barnett, V. Environmental Statistics: Methods and Applications; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Li, Q.; Cao, Y.; He, L.S.; Wang, Y.F.; Gong, C.; He, S.H. Spatial distribution characteristics and source analysis of soil heavy metal at typical smelting industry sites. Environ. Sci. 2021, 42, 5930–5937. [Google Scholar] [CrossRef]
- Qu, M.K.; Li, W.D.; Zhang, C.R.; Wang, S.Q.; Yang, Y.; He, L.Y. Source apportionment of heavy metals in soils using multivariate statistics and geostatistics. Pedosphere 2013, 23, 437–444. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, N.; Ali, K.; Khan, M.E.H.; Jones, D.A. Screening of Xanthium strumarium (IAPS) Growing on Abandoned Habitats in Khyber Pakhtunkhwa, Pakistan: Perspectives for Phytoremediation. Appl. Sci. 2021, 11, 11704. [Google Scholar] [CrossRef]
- Tian, H.Z.; Xue, Z.G.; Cheng, K.; Qu, Y.P.; Chai, F.H.; Hao, J.M. Trend and characteristics of atmospheric emissions of Hg, As and Se from coal combustion in China,1980–2007. Atmos. Chem. Phys. 2010, 10, 11905–11919. [Google Scholar] [CrossRef]
- Hsu, S.L.; Hung, J.; Wallace, A. Soil pH Variation Within a Soil. I. pH Variation in Soil Pores Observed in a Column-Leaching Method. Commun. Soil Sci. Plant Anal. 2004, 35, 319–329. [Google Scholar] [CrossRef]
- Müller, H.S.; Dechow, R.; Flessa, H. Inventory and assessment of pH in cropland and grassland soils in Germany. J. Plant Nutr. Soil Sci. 2022, 185, 145–158. [Google Scholar] [CrossRef]
- Chi, Q.H.; Ma, S.M. Comparison between chemical composition of bedrocks in the upper reaches and that of alluvial plain soils in the lower reaches of a drainage area. Geol. Bull. China 2008, 27, 188–195. [Google Scholar] [CrossRef]
- Nikos, N.; José Antonio, R.M. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero River basin (Spain). Geoderma 2012, 189, 554–562. [Google Scholar] [CrossRef]
- Khan, N.; Khan, J.; Ullah, R.; Ali, K.; Jones, D.A.; Khan, M.E.H. Heavy Metals Contaminants in Watercress (Nasturtium officinale R.BR.): Toxicity and Risk Assessment for Humans along the Swat River Basin, Khyber Pakhtunkhwa, Pakistan. Sustainability 2022, 14, 4690. [Google Scholar] [CrossRef]
- Murgueytio, A.M.; Evans, R.G.; Sterling, D.A.; Clardy, S.A.; Shadel, B.N.; Clements, B.W. Relationship between lead miningand blood lead levels in children. Arch. Environ. Health 1998, 53, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Q.; Li, Z.Y.; Lu, X.N.; Lu, X.M.; Duan, Q.N.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Yang, J.; Wang, H.; Hu, W. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Sci. Total Environ. 2021, 767, 144879. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Zhuo, H.M.; Kang, A.L.; Fang, Z.T.; Zhu, M.Y.; Dong, M.X.; Wang, J.C.; Ren, L. Contamination, risk assessment and source apportionment of the heavy metals in the soils of apple orchard in Qixia City, Shandong Province, China. Stoch. Environ. Res. Risk Assess. 2022, 36, 2581–2595. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Y.W.; Yan, M.S.; Wang, R.; Zhang, F.L.; Zhong, K.Q.; Zhu, H.S.; Luo, K. Heavy metal pollution and human health risks assessment of soil and crops near the mercury ore in Chongqing. Environ. Chem. 2022, 41, 536–548. [Google Scholar] [CrossRef]
Factors | Description | Unit | Values | Source | ||
---|---|---|---|---|---|---|
Adult | Child | |||||
C | The topsoil heavy metal content | mg kg−1 | This study | |||
IngR | Ingestion rate | mg d−1 | 100 | 200 | [9,26] | |
InhR | Inhalation rate | m3 d−1 | 7.5 | 15 | [9,26] | |
EF | Exposure frequency | d a−1 | 350 | 350 | [49,51] | |
ED | Exposure duration | a | 24 | 6 | [9,26] | |
CF | Conversion factor | kg mg−1 | 1 × 10−6 | 1 × 10−6 | [14,26] | |
SA | Exposed skin area | cm2 | 5700 | 2800 | [9,26] | |
AF | Skin adherence factor | mg cm−2 d−1 | 0.07 | 0.2 | [9,26] | |
ABS | Dermal absorption factor | unitless | 0.01 | 0.01 | [14] | |
PEF | Particle emission factor | m3 kg−1 | 1.36 × 10−9 | 1.36 × 10−9 | [9,26] | |
BW | Average body weight | kg | 62.5 | 16 | [26,49] | |
AT | Average time | non-carcinogens | d | ED × 365 | [47,48] | |
carcinogens | 70 × 365 |
RfD | Source | SF | Source | |||||
---|---|---|---|---|---|---|---|---|
Ingestion | Dermal | Inhalation | Ingestion | Dermal | Inhalation | |||
As | 3.00 × 10−4 | 1.23 × 10−4 | 3.00 × 10−4 | [26,50] | 1.50 | 1.50 | 4.30 × 10−3 | [46] |
Cd | 1.00 × 10−4 | 1.00 × 10−5 | 1.00 × 10−4 | [14] | 6.10 | 6.10 | 1.80 × 10−3 | [46] |
Cu | 4.00 × 10−2 | 1.20 × 10−2 | 4.02 × 10−2 | [14] | – | – | – | |
Cr | 3.00 × 10−3 | 6.00 × 10−5 | 2.86 × 10−5 | [26,50] | – | – | 42.00 | [46] |
Hg | 3.00 × 10−4 | 2.10 × 10−5 | 3.00 × 10−4 | [14,26] | – | – | – | |
Ni | 2.00 × 10−2 | 5.40 × 10−3 | 2.06 × 10−2 | [26] | – | – | 8.40 × 10−1 | [46] |
Pb | 3.50 × 10−3 | 5.25 × 10−4 | 3.25 × 10−3 | [14] | – | – | – | |
Zn | 3.00 × 10−1 | 6.00 × 10−2 | 3.00 × 10−1 | [26] | – | – | – |
pH | As | Cd | Cu | Cr | Hg | Ni | Pb | Zn | ||
---|---|---|---|---|---|---|---|---|---|---|
Minimum | 4.66 | 1.9 | 0.026 | 8.4 | 11.4 | 0.006 | 3.4 | 6.3 | 23.4 | |
Maximum | 7.82 | 66.6 | 1.836 | 251.7 | 611.1 | 0.79 | 222.1 | 327.2 | 345.3 | |
Mean | 6.23 | 8.01 | 0.118 | 33.33 | 89.26 | 0.037 | 33.63 | 25.37 | 69.46 | |
Median | 6.2 | 7.3 | 0.103 | 26.8 | 73.1 | 0.029 | 28.9 | 24.2 | 64.8 | |
S.E. | 0.02 | 0.13 | 0.003 | 0.65 | 1.8 | 0.001 | 0.63 | 0.43 | 0.76 | |
S.D. | 0.63 | 4.24 | 0.1 | 21.9 | 60.66 | 0.04 | 21.11 | 14.36 | 25.75 | |
CV (%) | 10.1 | 52.9 | 82.3 | 65.7 | 68 | 98.5 | 62.8 | 56.6 | 37.1 | |
Skewness | 0.11 | 4.2 | 9.11 | 3.15 | 3.59 | 10.31 | 3.32 | 12.14 | 2.71 | |
Kurtosis | −0.7 | 41.71 | 129.3 | 15.94 | 17.01 | 180.06 | 14.89 | 212.2 | 18.04 | |
Shandong topsoil (1) | 7.32 | 8.6 | 0.132 | 22.6 | 62 | 0.031 | 27.1 | 23.6 | 63.3 | |
China topsoil (2) | — | 11.2 | 0.097 | 23 | 61 | 0.065 | 27 | 26 | 74 | |
World topsoil (3) | — | 6 | 0.35 | 30 | 70 | 0.06 | 50 | 35 | 90 | |
SEQRCS (4) | pH < 6.5 | — | 30 | 0.3 | 50 | 150 | 0.5 | 70 | 90 | 200 |
6.5 < pH < 7.5 | — | 25 | 0.3 | 100 | 200 | 0.6 | 100 | 120 | 250 | |
pH > 7.5 | — | 20 | 0.6 | 100 | 250 | 1 | 190 | 170 | 300 |
As | Cd | Cu | Cr | Hg | Ni | Pb | Zn | Iol | Iml | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | −2.76 | −2.96 | −2.01 | −3.03 | −2.91 | −3.58 | −2.49 | −2.02 | −1.03 | −1.31 | |
Maximum | 2.37 | 3.21 | 2.89 | 2.72 | 4.09 | 2.45 | 3.21 | 1.86 | 4.09 | 3.60 | |
Mean | −0.83 | −0.96 | −0.23 | −0.25 | −0.60 | −0.45 | −0.57 | −0.53 | 0.32 | −0.04 | |
Unpolluted | Igeo < 0 | 1036 | 1051 | 776 | 880 | 946 | 958 | 1077 | 993 | 458 | 714 |
Degree of pollution | 0 ≤ Igeo < 1 | 92 | 71 | 285 | 178 | 148 | 124 | 45 | 136 | 474 | 314 |
1 ≤ Igeo < 2 | 6 | 9 | 65 | 69 | 33 | 51 | 10 | 6 | 171 | 98 | |
2 ≤ Igeo < 3 | 1 | 3 | 9 | 8 | 7 | 2 | 2 | 0 | 29 | 8 | |
3 ≤ Igeo < 4 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | |
4 ≤ Igeo < 5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | |
Igeo ≥ 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Proportion of polluted sites/% | 8.7 | 7.4 | 31.6 | 22.4 | 16.7 | 15.6 | 5.1 | 12.5 | 59.6 | 37.1 |
Er | PERI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Cu | Cr | Hg | Ni | Pb | Zn | ||||
Minimum | 2.2 | 5.8 | 1.9 | 0.4 | 8.0 | 0.6 | 1.3 | 0.4 | 30.7 | ||
Maximum | 77.4 | 417.3 | 55.7 | 19.7 | 1018.8 | 41.0 | 69.3 | 5.5 | 1099.1 | ||
Mean | 9.3 | 26.8 | 7.4 | 2.9 | 47.2 | 6.2 | 5.4 | 1.1 | 106.2 | ||
S.D. | 4.9 | 22.0 | 4.8 | 2.0 | 46.5 | 3.9 | 3.0 | 0.4 | 56.9 | ||
Exceeds the standard number of points | Er < 40 | 1132 | 1014 | 1134 | 1135 | 648 | 1134 | 1132 | 1135 | PERI < 150 | 1029 |
40 ≤ Er < 80 | 3 | 108 | 1 | 0 | 390 | 1 | 3 | 0 | 150 ≤ PERI < 300 | 93 | |
80 ≤ Er < 160 | 0 | 12 | 0 | 0 | 72 | 0 | 0 | 0 | 300 ≤ PERI < 600 | 12 | |
160 ≤ Er < 320 | 0 | 2 | 0 | 0 | 22 | 0 | 0 | 0 | PERI ≥ 600 | 1 | |
Er ≥ 320 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | |||
Contribution rate of Er/% | Minimum | 1.1 | 3.4 | 1.0 | 0.2 | 6.9 | 0.7 | 0.6 | 0.1 | ||
Maximum | 31.7 | 83.2 | 32.1 | 15.5 | 92.7 | 29.5 | 41.0 | 3.8 | |||
Mean | 9.3 | 25.5 | 7.3 | 2.9 | 42.0 | 6.3 | 5.5 | 1.1 | |||
Median | 8.8 | 24.3 | 6.3 | 2.5 | 40.9 | 5.4 | 5.2 | 1.1 | |||
CV/% | 40.1 | 38.9 | 52.6 | 59.7 | 29.3 | 55.6 | 44.5 | 39.5 |
HQ-non-canc. | As | Cd | Cu | Cr | Hg | Ni | Pb | Zn | HI | Proportion of HQ | |
---|---|---|---|---|---|---|---|---|---|---|---|
Adults | Maximum | 1.34 × 10−1 | 1.41 × 10−2 | 1.14 × 10−2 | 6.78 × 10−4 | 6.61 × 10−3 | 2.04 × 10−2 | 1.89 × 10−1 | 2.21 × 10−3 | 2.07 × 10−1 | |
Minimum | 3.81 × 10−3 | 1.96 × 10−4 | 3.81 × 10−4 | 1.26 × 10−5 | 5.19 × 10−5 | 3.12 × 10−4 | 3.65 × 10−3 | 1.50 × 10−4 | 1.08 × 10−2 | ||
Mean + S.E. | 1.61 × 10−2 +7.489 × 10−6 | 9.06 × 10−4 + 6.564 × 10−7 | 1.51 × 10−3 + 8.106 × 10−7 | 9.90 × 10−5 +5.930 × 10−8 | 3.06 × 10−4 + 2.661 × 10−7 | 3.09 × 10−3 + 1.709 × 10−6 | 1.47 × 10−2 + 7.322 × 10−6 | 4.44 × 10−4 + 1.454 × 10−7 | 3.71 × 10−2 + 1.181 × 10−5 | ||
S.D. | 8.50 × 10−3 | 7.45 × 10−4 | 9.92 × 10−4 | 6.73 × 10−5 | 3.02 × 10−4 | 1.94 × 10−3 | 8.31 × 10−3 | 1.65 × 10−4 | 1.34 × 10−2 | ||
Amount (>1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Children | Maximum | 2.84 | 2.52 × 10−2 | 8.60 × 10−2 | 3.14 × 10−3 | 4.61 × 10−2 | 1.53 × 10−1 | 1.17 | 1.64 × 10−2 | 3.01 | |
Minimum | 8.11 × 10−2 | 3.50 × 10−4 | 2.87 × 10−3 | 5.86 × 10−5 | 3.62 × 10−4 | 2.35 × 10−3 | 2.30 × 10−2 | 1.11 × 10−3 | 1.31 × 10−1 | ||
Mean + S.E. | 3.42 × 10−1 +1.595 × 10−4 | 1.62 × 10−3 +1.172 × 10−6 | 1.14 × 10−2 + 6.590 × 10−6 | 4.59 × 10−4 + 2.749 × 10−7 | 2.13 × 10−3 + 1.850 × 10−6 | 2.32 × 10−2 + 1.286 × 10−5 | 9.11 × 10−2 + 4.511 × 10−5 | 3.30 × 10−3 + 1.075 × 10−6 | 3.30 × 10−3 + 3.736 × 10−4 | ||
S.D. | 1.81 × 10−1 | 1.33 × 10−3 | 7.48 × 10−3 | 3.12 × 10−4 | 2.10 × 10−3 | 1.46 × 10−2 | 5.12 × 10−2 | 1.22 × 10−3 | 1.99 × 10−1 | ||
Amount (>1) | 9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 17 |
CR-canc. | As | Cd | CR | TCR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RfDing | RfDdermal | RfDinh | RfDing | RfDdermal | RfDinh | As | Cd | Cr (RfDinh) | Ni (RfDinh) | |||
Adults | Maximum | 5.48 × 10−5 | 2.19 × 10−6 | 2.10 × 10−11 | 6.14 × 10−6 | 2.45 × 10−7 | 2.43 × 10−13 | 5.70 × 10−5 | 6.39 × 10−6 | 5.50 × 10−6 | 3.99 × 10−8 | 5.91 × 10−5 |
Minimum | 1.56 × 10−6 | 6.24 × 10−8 | 6.00 × 10−13 | 8.53 × 10−8 | 3.41 × 10−9 | 3.37 × 10−15 | 1.63 × 10−6 | 8.87 × 10−8 | 1.03 × 10−7 | 6.12 × 10−10 | 1.82 × 10−6 | |
Mean + S.E. | 6.59 × 10−6 + 3.075 × 10−9 | 2.63 × 10−7 + 1.225 × 10−10 | 2.53 × 10−12 + 1.181 × 10−15 | 3.95 × 10−7 + 2.855 × 10−10 | 1.57 × 10−8 + 1.137 × 10−11 | 1.56 × 10−14 + 1.128 × 10−17 | 6.86 × 10−6 + 3.198 × 10−9 | 4.10 × 10−7 + 2.969 × 10−10 | 8.03 × 10−7 + 4.802 × 10−10 | 6.05 × 10−9 + 3.348 × 10−12 | 8.08 × 10−6 + 3.313 × 10−9 | |
S.D. | 3.49 × 10−6 | 1.39 × 10−7 | 1.34 × 10−12 | 3.24 × 10−7 | 1.29 × 10−8 | 1.28 × 10−14 | 3.63 × 10−6 | 3.37 × 10−7 | 5.45 × 10−7 | 3.80 × 10−9 | 3.76 × 10−6 | |
Amount (>10−4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Children | Maximum | 1.03 × 10−4 | 2.87 × 10−6 | 9.41 × 10−12 | 6.14 × 10−6 | 2.45 × 10−7 | 2.43 × 10−13 | 1.06 × 10−4 | 1.23 × 10−5 | 6.16 × 10−6 | 7.46 × 10−8 | 1.08 × 10−4 |
Minimum | 2.93 × 10−6 | 8.20 × 10−8 | 2.68 × 10−13 | 8.53 × 10−8 | 3.41 × 10−9 | 3.37 × 10−15 | 3.01 × 10−6 | 1.71 × 10−7 | 1.15 × 10−7 | 1.14 × 10−9 | 3.30 × 10−6 | |
Mean + S.E. | 1.24 × 10−5 + 5.753 × 10−9 | 3.46 × 10−7 + 1.612 × 10−10 | 1.13 × 10−12 + 5.278 × 10−16 | 3.95 × 10−7 + 2.855 × 10−10 | 1.57 × 10−8 + 1.137 × 10−11 | 1.56 × 10−14 + 1.128 × 10−17 | 1.27 × 10−5 + 5.912 × 10−9 | 7.92 × 10−7 + 5.736 × 10−10 | 8.99 × 10−7 + 5.383 × 10−10 | 1.13 × 10−8 + 6.247 × 10−12 | 1.44 × 10−5 + 6.088 × 10−9 | |
S.D. | 6.53 × 10−6 | 1.83 × 10−7 | 5.99 × 10−13 | 3.24 × 10−7 | 1.29 × 10−8 | 1.28 × 10−14 | 6.71 × 10−6 | 6.51 × 10−7 | 6.11 × 10−7 | 7.09 × 10−9 | 6.91 × 10−6 | |
Amount (>10−4) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Liu, H.; Liu, W.; Qin, P.; Yu, J.; Zhou, B.; Zhang, F.; Chen, Z.; Zhao, Y.; Shi, Z. Spatial Distribution, Pollution Characteristics, and Health Risk Assessment of Heavy Metals in Soils from a Typical Agricultural County, East China. Agriculture 2022, 12, 1565. https://doi.org/10.3390/agriculture12101565
Yu L, Liu H, Liu W, Qin P, Yu J, Zhou B, Zhang F, Chen Z, Zhao Y, Shi Z. Spatial Distribution, Pollution Characteristics, and Health Risk Assessment of Heavy Metals in Soils from a Typical Agricultural County, East China. Agriculture. 2022; 12(10):1565. https://doi.org/10.3390/agriculture12101565
Chicago/Turabian StyleYu, Linsong, Hongbo Liu, Weidong Liu, Pinrui Qin, Jian Yu, Bing Zhou, Fugui Zhang, Ziwan Chen, Yuyan Zhao, and Zeming Shi. 2022. "Spatial Distribution, Pollution Characteristics, and Health Risk Assessment of Heavy Metals in Soils from a Typical Agricultural County, East China" Agriculture 12, no. 10: 1565. https://doi.org/10.3390/agriculture12101565
APA StyleYu, L., Liu, H., Liu, W., Qin, P., Yu, J., Zhou, B., Zhang, F., Chen, Z., Zhao, Y., & Shi, Z. (2022). Spatial Distribution, Pollution Characteristics, and Health Risk Assessment of Heavy Metals in Soils from a Typical Agricultural County, East China. Agriculture, 12(10), 1565. https://doi.org/10.3390/agriculture12101565