Impact of Cultivation Practices and Varieties on Productivity, Profitability, and Nutrient Uptake of Rice (Oryza sativa L.) and Wheat (Triticum aestivum L.) Cropping System in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Environmental Materials (Palampur and Malan)
2.2. Experimental Design and Crop Management
2.3. Estimation of Productivity, Profitability and Uptake
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banjara, T.R.; Bohra, J.S.; Kumar, S.; Singh, T.; Shori, A.; Prajapat, K. Sustainable alternative crop rotations to the irrigated rice-wheat cropping system of Indo-Gangetic Plains of India. Arch. Agron. Soil Sci. 2022, 68, 1568–1585. [Google Scholar] [CrossRef]
- Ahmad, I.; Iram, S. Rice–Wheat Cropping Pattern and Resource Conservation Technologies. 2006. Available online: http://www.pakissan.com/english/agri.overview/rice.wheat.cropping.pattern.shtml (accessed on 16 August 2022).
- Ladha, J.K.; Kumar, V.; Alam, M.M.; Sharma, S.; Gathala, M.; Chandna, P.; Saharawat, Y.S.; Balasubramanian, V. Integrating crop and resource management technologies for enhanced productivity, profitability, and sustainability of the rice-wheat system in South Asia. In Integrated Crop and Resource Management in the Rice-wheat System of South Asia; IRRI: Los Baños, Philippines, 2009; pp. 69–108. [Google Scholar]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Gathala, M.K.; McDonald, A.; Gerard, B. Conservation agriculture for sustainable intensification in South Asia. Nat. Sustain. 2020, 3, 336–343. [Google Scholar] [CrossRef]
- Ali, B.; Hafeez, A.; Ahmad, S.; Javed, M.A.; Cavalu, S.; Afridi, M.S. Bacillus thuringiensis PM25 Ameliorates Oxidative Damage of Salinity Stress in Maize via Regulating Growth, Leaf Pigments, Antioxidant Defense System, and Stress Responsive Gene Expression. Front. Plant Sci. 2022, 13, 2568. [Google Scholar] [CrossRef]
- Directorate of Economics and Statistics. Pocket Book of Agricultural Statistics 2020; Directorate of Economics and Statistics: Chennai, India, 2020.
- Department of Economics and Statistics, State Government of Himachal Pradesh. Statistical Abstract of Department of Economic and Statistics; Directorate of Economics and Statistics: Chennai, India, 2017; pp. 1–157.
- Choudhary, K.M.; Jat, H.S.; Nandal, D.P.; Bishnoi, D.K.; Sutaliya, J.M.; Choudhary, M.; Sharma, P.C.; Jat, M.L. Evaluating alternatives to rice-wheat system in western Indo-Gangetic Plains: Crop yields, water productivity and economic profitability. Field Crops Res. 2018, 218, 1–10. [Google Scholar] [CrossRef]
- Pathak, H.; Tewari, A.N.; Sankhyan, S.; Dubey, D.S.; Mina, U.; Singh, V.K.; Jain, N. Direct-seeded rice: Potential, performance and problems-Areview. Curr. Adv. Agric. Sci. (Int. J.) 2011, 3, 77–88. [Google Scholar]
- Saharawat, Y.S.; Singh, B.; Malik, R.K.; Ladha, J.K.; Gathala, M.; Jat, M.L.; Kumar, V. Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. Field Crops Res. 2010, 116, 260–267. [Google Scholar] [CrossRef]
- Adnan, M.; Fahad, S.; Saleem, M.H.; Ali, B.; Mussart, M.; Ullah, R.; Arif, M.; Ahmad, M.; Shah, W.A.; Romman, M. Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils. Sci. Rep. 2022, 12, 11997. [Google Scholar] [CrossRef]
- Ahmad, M.; Ishaq, M.; Shah, W.A.; Adnan, M.; Fahad, S.; Saleem, M.H.; Khan, F.U.; Mussarat, M.; Khan, S.; Ali, B.; et al. Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils. Sustainability 2022, 14, 7669. [Google Scholar] [CrossRef]
- Saleem, K.; Asghar, M.A.; Saleem, M.H.; Raza, A.; Kocsy, G.; Iqbal, N.; Ali, B.; Albeshr, M.F.; Bhat, E.A. Chrysotile-Asbestos-Induced Damage in Panicum virgatum and Phleum pretense Species and Its Alleviation by Organic-Soil Amendment. Sustainability 2022, 14, 10824. [Google Scholar] [CrossRef]
- Bezborodov, G.A.; Shadmanov, D.K.; Mirhashimov, R.T.; Yuldashev, T.; Qureshi, A.S.; Noble, A.D.; Qadir, M. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agric. Ecosyst. Environ. 2010, 138, 95–102. [Google Scholar] [CrossRef]
- Naresh, R.K.; Singh, S.P.; Chauhan, P. Influence of conservation agriculture, permanent raised bed planting and residue management on soil quality and productivity in maize–wheat system in western Uttar Pradesh. Int. J. Life Sci. Biotechnol. Pharma Res. 2012, 1, 27–34. [Google Scholar]
- Ali, B.; Wang, X.; Saleem, M.H.; Azeem, M.A.; Afridi, M.S.; Nadeem, M.; Ghazal, M.; Batool, T.; Qayyum, A.; Alatawi, A. Bacillus mycoides PM35 Reinforces Photosynthetic Efficiency, Antioxidant Defense, Expression of Stress-Responsive Genes, and Ameliorates the Effects of Salinity Stress in Maize. Life 2022, 12, 219. [Google Scholar] [CrossRef]
- Ali, B.; Wang, X.; Saleem, M.H.; Hafeez, A.; Afridi, M.S.; Khan, S.; Ullah, I.; Amaral Júnior, A.T.d.; Alatawi, A.; Ali, S. PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. Plants 2022, 11, 345. [Google Scholar] [CrossRef] [PubMed]
- Farooq, T.H.; Rafay, M.; Basit, H.; Shakoor, A.; Shabbir, R.; Riaz, M.U.; Ali, B.; Kumar, U.; Qureshi, K.A.; Jaremko, M. Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species toward Cr and Pb stress. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Amna; Ali, B.; Azeem, M.A.; Qayyum, A.; Mustafa, G.; Ahmad, M.A.; Javed, M.T.; Chaudhary, H.J. Bio-Fabricated Silver Nanoparticles: A Sustainable Approach for Augmentation of Plant Growth and Pathogen Control. In Sustainable Agriculture Reviews 53; Springer: Berlin, Germany, 2021; pp. 345–371. [Google Scholar]
- Dola, D.B.; Mannan, M.A.; Sarker, U.; Mamun, M.A.A.; Islam, T.; Ercisli, S.; Saleem, M.H.; Ali, B.; Pop, O.L.; Marc, R.A. Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Front. Plant Sci. 2022, 13, 992535. [Google Scholar] [CrossRef] [PubMed]
- Afridi, M.S.; Javed, M.A.; Ali, S.; Henrique, F.; De Medeiros, V.; Ali, B.; Salam, A.; Marc, R.A.; Alkhalifah, D.H.M.; Selim, S. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Front. Plant Sci. 2022, 1–22. [Google Scholar] [CrossRef]
- Wahab, A.; Abdi, G.; Saleem, M.H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C.C.; Marc, R.A. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants 2022, 11, 1620. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012, 2012, 548620. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Adnan, M.; Basir, A.; Fhad, S.; Hafeez, A.; Subhan, F.; Alamri, S.; Hashem, M.; Rehman, I.U. Impact of tillage, potassium levels and sources on growth, yield and yield attributes of wheat. Pak. J. Bot. 2022, 55, 1. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Mahajan, G.; Sardana, V.; Timsina, J.; Jat, M.L. Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: Problems, opportunities, and strategies. Adv. Agron. 2012, 117, 315–369. [Google Scholar]
- Jat, R.K.; Sapkota, T.B.; Singh, R.G.; Jat, M.L.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crops Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
- Singh, S.; Bhushan, L.; Ladha, J.K.; Gupta, R.K.; Rao, A.N.; Sivaprasad, B. Weed management in dry-seeded rice (Oryza sativa) cultivated in the furrow-irrigated raised-bed planting system. Crop. Prot. 2006, 25, 487–495. [Google Scholar] [CrossRef]
- Saini, A.; Manuja, S.; Kumar, S.; Kumari, S.; Dogra, N. Effect of tillage and cultivars on growth and growth indices of rice (Oryza sativa L.). Environ. Conserv. J. 2022, 23, 244–250. [Google Scholar] [CrossRef]
- Walker, A.; Black, C.A. An examination of wet acid method for determining soil organic matter and a pro_670 posed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar]
- Asija, G.L.; Subbiah, B.V. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Horwitz, W.; Chichilo, P.; Reynolds, H. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC: Rockville, MD, USA, 1970. [Google Scholar]
- Mehta, A.; Basandrai, A.K.; Basandrai, D.; Rana, V.; Singh, P. Identification of field relevant powdery mildew and yellow rust resistant donors in some advanced breeding material of wheat through GGE biplot analysis. Indian Phytopathol. 2022, 75, 405–418. [Google Scholar] [CrossRef]
- Walia, A. Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya. 2020. [Google Scholar]
- Kumari, S.; Manuja, S.; Kumar, S.; Sharma, R.P.; Kumar, A. Growth analysis of rice hybrids as influenced by dates of transplanting under lowland conditions. Himachal J. Agric. Res. 2022, 48, 107–111. [Google Scholar]
- Meenakshi, S. Site Specific Nutrient Management in Wheat in Rice Wheat Cropping System; Csk Himachal Pradesh Agriculture University: Palampur, India, 2018. [Google Scholar]
- Seth, M.; Thakur, D.R.; Manuja, S.; Singh, S.; Sharma, A. Effect of site specific nutrient management on growth indices in wheat in rice-wheat cropping system. J. Pharmacogn. Phytochem. 2019, 8, 162–165. [Google Scholar]
- Seth, M.; Thakurand, D.R.; Manuja, S. Effect of tillage and site-specific nutrient management on productivity of rice-wheat cropping system. J. Crop. Weed 2019, 15, 115–119. [Google Scholar]
- Alam, M.D.; Islam, M.; Salahin, N.; Hasanuzzaman, M. Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Sci. World J. 2014, 2014, 437283. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.D.; Bhattacharyya, R.; Chandra, S.; Kundu, S. Tillage and Irrigation Effects on Soil Infiltration, Water Expense and Crop Yield under Rice-Wheat System in a Medium Textured Soil of North-West Himalayas. J. Indian Soc. Soil Sci. 2006, 54, 151–157. [Google Scholar]
- Rana, K. Studies on Integrated Nutrient Management and Conservation Tillage in Soyabean-Wheat Cropping sys_649 Tem. Ph.D. Thesis, CSK HPKV, Palampur, India, 2020. [Google Scholar]
- Nehra, A.S.; Hooda, I.S.; Singh, K.P. Effect of integrated nutrient management on growth and yield of wheat (Triticum aestivum). Indian J. Agron. 2001, 46, 112–117. [Google Scholar]
- Chavan, S.B.; Rao, G.R.; Keerthika, A.; Gill, K.K.; Aggarwal, R.; Goyal, P.; Loria, N.; Verma, K.S.; Bhardwaj, S.K.; Brahmi, M.K. 2221 Quantification of Greenhouse Gas Emission from Five Agroforestry Systems in Semi-arid Alfisols of India during Rainy Season. Indian J. Ecol. 2015, 42, 1. [Google Scholar]
- Piggin, C.M.; Garcia, C.O.; Janiya, J.D.; Bell, M.A.; Castro, E.C., Jr.; Razote, E.B.; Hill, J. Establishment of irrigated rice under zero and conventional tillage systems in the Philippines. In Rice Research for Food Security and Poverty Alleviation, Proceedings of the International Rice Research Conference, Los Baños, Philippines, 31 March–3 April 2000; International Rice Research Institute (IRRI): Los Baños, Philippines, 2001; pp. 533–543. [Google Scholar]
- Rahman, M.Z.; Islam, M.R.; Islam, M.T.; Karim, M.A. Dry matter accumulation, leaf area index and yield responses of wheat under different levels of nitrogen. Bangladesh J. Agric. 2014, 7, 27–32. [Google Scholar]
- Pandey, B.P.; Kandel, T.P. Response of Rice to Tillage, Wheat Residue and Weed Management in a Rice-Wheat Cropping System. Agronomy 2020, 10, 1734. [Google Scholar] [CrossRef]
- Ankir, S.M.; Kumar, S.; Shilpa, A.S.; Kumari, S. Productivity and Profitability of Rice (Oryza sativa L.) as Influenced by different Tillage Systems and Cultivars. Biol. Forum-Int. J. 2022, 14, 748–751. [Google Scholar]
- Saini, A.; Manuja, S.; Kumar, S.; Shilpa, K.; Kumari, S.; Kumar, A.; Suri, D. Effect of different tillage systems and cultivars on yield and yield attributes of rice (Oryza sativa L.). Environ. Conserv. J. 2022, 23, 365–369. [Google Scholar] [CrossRef]
- Kumar, P. Effect of Tillage, Cultivars, Nitrogen and Residue Management on Crop Performance and Carbon Sequestration in Rice-Wheat Cropping System [With CD Copy]. Ph.D. Thesis, Agronomy, CCSHAU, Hisar, India, 2016. [Google Scholar]
- Ishaq, M.; Ibrahim, M.; Lal, R. Tillage effect on nutrient uptake by wheat and cotton as influenced by fertilizer rate. Soil Tillage Res. 2001, 62, 41–53. [Google Scholar] [CrossRef]
- Gangwar, K.S.; Singh, K.K.; Sharma, S.K. Effect of tillage on growth, yield and nutrient uptake in wheat after rice in the Indo-Gangetic Plains of India. J. Agric. Sci. 2004, 142, 453–459. [Google Scholar] [CrossRef]
Treatments | Palampur | Malan | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain | Straw | Biological | Grain | Straw | Biological | |||||||
2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | |
Cultivation practices | ||||||||||||
Reduced tillage | 4.33 | 4.20 | 6.22 | 5.87 | 10.56 | 10.07 | 4.67 | 4.22 | 7.05 | 6.16 | 11.73 | 10.43 |
Zero tillage | 4.00 | 3.98 | 5.88 | 5.67 | 9.88 | 9.66 | 4.38 | 3.91 | 6.92 | 5.82 | 11.30 | 9.74 |
Conventional tillage | 4.48 | 4.45 | 6.29 | 6.22 | 10.77 | 10.68 | 4.82 | 4.50 | 7.08 | 6.30 | 11.90 | 10.80 |
Natural farming | 1.68 | 1.61 | 2.68 | 2.50 | 4.36 | 4.11 | 1.97 | 2.16 | 3.28 | 3.41 | 5.26 | 5.57 |
SEm ± | 0.7 | 0.7 | 1.1 | 0.9 | 1.7 | 1.6 | 0.6 | 0.6 | 1.2 | 1.0 | 1.8 | 1.7 |
CD (P = 0.05) | 2.5 | 2.7 | 3.8 | 3.2 | 6.1 | 5.7 | 2.2 | 2.4 | 4.2 | 3.5 | 6.3 | 5.9 |
Varieties | ||||||||||||
HPW 349 | 3.48 | 3.40 | 5.05 | 4.83 | 8.54 | 8.24 | 3.74 | 3.50 | 5.84 | 5.13 | 9.59 | 8.63 |
HPW 368 | 3.72 | 3.70 | 5.48 | 5.34 | 9.21 | 9.04 | 4.17 | 3.92 | 6.59 | 5.94 | 10.76 | 9.86 |
HS 562 | 3.65 | 3.58 | 5.27 | 5.03 | 8.93 | 8.61 | 3.98 | 3.71 | 5.82 | 5.20 | 9.80 | 8.91 |
SEm ± | 0.4 | 0.4 | 0.7 | 0.6 | 1.0 | 0.9 | 0.7 | 0.6 | 1.1 | 1.1 | 1.7 | 1.7 |
CD (P = 0.05) | 1.3 | 1.2 | 2.0 | 1.9 | 3.2 | 2.9 | 2.2 | 1.9 | 3.3 | 3.4 | 5.2 | 5.2 |
Treatments | Palampur | Malan | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain | Straw | Biological | Grain | Straw | Biological | |||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Cultivation Practices | ||||||||||||
Reduced tillage | 3.01 | 3.06 | 5.40 | 5.44 | 8.41 | 8.51 | 3.06 | 3.21 | 5.49 | 5.65 | 8.5 | 8.86 |
Zero tillage | 2.87 | 2.91 | 5.32 | 5.30 | 8.20 | 8.21 | 2.77 | 3.05 | 5.12 | 5.51 | 7.89 | 8.56 |
Conventional tillage | 3.38 | 3.45 | 5.97 | 6.04 | 9.36 | 9.49 | 3.42 | 3.58 | 6.01 | 6.24 | 9.43 | 9.83 |
Natural farming | 2.35 | 1.90 | 4.51 | 3.58 | 6.37 | 5.49 | 2.28 | 2.60 | 4.32 | 4.84 | 6.60 | 7.45 |
SEm ± | 0.7 | 0.6 | 1.5 | 1.2 | 2.1 | 1.7 | 0.6 | 0.6 | 1.2 | 1.14 | 1.8 | 1.7 |
CD (p = 0.05) | 2.5 | 2.1 | 5.1 | 4.2 | 7.4 | 6.0 | 2.3 | 2.2 | 4.1 | 3.9 | 6.5 | 6.0 |
Varieties | ||||||||||||
Sukara Dhan 1 (HPR 1156) | 2.89 | 2.83 | 5.18 | 4.99 | 8.07 | 7.82 | 2.88 | 3.12 | 5.13 | 5.47 | 8.01 | 8.60 |
Him Palam Dhan 1 (HPR 2656) | 2.75 | 2.68 | 5.17 | 5.03 | 7.90 | 7.71 | 2.70 | 2.86 | 5.10 | 5.37 | 7.80 | 8.24 |
Him Palam Lal Dhan 1 (HPR 2795) | 3.10 | 2.99 | 5.55 | 5.24 | 8.66 | 8.24 | 3.07 | 3.34 | 5.48 | 5.84 | 8.55 | 9.19 |
SEm ± | 0.6 | 0.6 | 0.7 | 0.7 | 1.2 | 1.3 | 0.6 | 0.6 | 1.0 | 1.0 | 1.7 | 1.6 |
CD (P = 0.05) | 1.8 | 1.9 | 2.1 | 2.1 | 3.7 | 3.8 | 2.0 | 1.8 | 3.2 | 3.1 | 5.1 | 4.84 |
Treatments | Cost of Cultivation (×103 INR ha−1) | Gross Return (×103 INR ha−1) | Net Return (×103 INR ha−1) | B:C Ratio | Gross Return (×103 INR ha−1) | Net Return (×103 INR ha−1) | B:C Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Palampur | Malan | ||||||||||||
Both Years | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | |
Cultivation practices | |||||||||||||
Reduced tillage | 43.5 | 129.2 | 124.1 | 85.7 | 80.6 | 1.97 | 1.85 | 141.8 | 127.5 | 98.3 | 84.0 | 2.26 | 1.93 |
Zero tillage | 41.4 | 120.2 | 118.5 | 78.8 | 77.1 | 1.90 | 1.86 | 135.1 | 118.2 | 93.7 | 76.8 | 2.26 | 1.85 |
Conventional tillage | 43.9 | 132.5 | 131.6 | 88.6 | 87.7 | 2.02 | 2.00 | 144.9 | 133.0 | 101.0 | 89.1 | 2.30 | 2.03 |
Natural farming | 40.6 | 52.0 | 49.4 | 11.4 | 8.8 | 0.28 | 0.22 | 62.1 | 66.6 | 21.5 | 26.0 | 0.53 | 0.64 |
Varieties | |||||||||||||
HPW 349 | 42.4 | 104.3 | 101.1 | 61.9 | 58.8 | 1.44 | 1.37 | 114.9 | 105.1 | 72.5 | 62.7 | 1.70 | 1.47 |
HPW 368 | 42.4 | 112.0 | 110.5 | 69.6 | 68.1 | 1.62 | 1.59 | 128.6 | 119.1 | 86.2 | 76.8 | 2.01 | 1.80 |
HS 562 | 42.4 | 109.2 | 106.1 | 66.8 | 63.7 | 1.56 | 1.48 | 119.4 | 109.8 | 77.1 | 67.4 | 1.80 | 1.58 |
Treatments | Cost of Cultivation (×103 INR ha−1) | Gross Return (×103 INRha−1) | Net Return (×103 INRha−1) | B:C | Gross Return (×103 INRha−1) | Net Return (×103 INRha−1) | B:C | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Palampur | Malan | ||||||||||||
Both Years | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Cultivation practices | |||||||||||||
Reduced tillage | 38.9 | 79.0 | 80.4 | 40.1 | 41.4 | 1.03 | 1.07 | 80.3 | 84.2 | 41.4 | 45.3 | 1.07 | 1.16 |
Zero tillage | 35.8 | 76.0 | 76.7 | 40.2 | 40.9 | 1.12 | 1.14 | 73.4 | 80.3 | 37.6 | 44.5 | 1.05 | 1.24 |
Conventional tillage | 39.3 | 88.8 | 90.0 | 49.5 | 50.7 | 1.26 | 1.29 | 89.4 | 93.6 | 50.1 | 54.3 | 1.27 | 1.38 |
Natural farming | 35.9 | 62.9 | 50.6 | 27.0 | 14.7 | 0.75 | 0.41 | 60.6 | 68.9 | 24.7 | 33.0 | 0.69 | 0.92 |
Varieties | |||||||||||||
Sukara Dhan 1 (HPR 1156) | 37.5 | 69.3 | 67.7 | 31.9 | 30.2 | 0.85 | 0.80 | 69.0 | 74.6 | 31.5 | 37.1 | 0.83 | 0.99 |
Him Palam Dhan 1 (HPR 2656) | 37.5 | 66.3 | 65.0 | 28.8 | 27.5 | 0.77 | 0.73 | 65.6 | 69.4 | 28.1 | 32.0 | 0.75 | 0.85 |
Him Palam Lal Dhan 1 (HPR 2795) | 37.5 | 94.3 | 90.6 | 56.8 | 53.1 | 1.51 | 1.41 | 93.2 | 101.2 | 55.7 | 63.8 | 1.48 | 1.70 |
Treatments | N Uptake (kg ha−1) | P Uptake (kg ha−1) | K Uptake (kg ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Palampur | Malan | Palampur | Malan | Palampur | Malan | |||||||
2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–20-20 | 2020–2021 | 2019–2020 | 2020–2021 | 2019–2020 | 2020–2021 | |
Cultivation practices | ||||||||||||
Reduced Tillage | 95.3 | 92.2 | 101.9 | 89.7 | 18.83 | 17.52 | 20.01 | 16.99 | 89.0 | 87.2 | 104.1 | 93.4 |
Zero tillage | 85.4 | 85.1 | 95.1 | 81.9 | 16.98 | 16.22 | 18.76 | 15.46 | 81.6 | 81.4 | 99.9 | 87.3 |
Conventional tillage | 100.9 | 100.1 | 106.4 | 95.9 | 19.92 | 19.35 | 20.82 | 18.13 | 94.3 | 95.3 | 107.7 | 99.6 |
Natural Farming | 39.9 | 34.1 | 42.3 | 43.9 | 6.92 | 6.52 | 8.34 | 8.31 | 35.7 | 34.9 | 45.8 | 48.7 |
SEm ± | 1.6 | 1.8 | 2.4 | 2.1 | 0.39 | 0.44 | 0.45 | 0.40 | 1.8 | 1.6 | 1.7 | 2.1 |
CD (p = 0.05) | 5.4 | 6.1 | 8.4 | 7.4 | 1.35 | 1.52 | 1.56 | 1.38 | 6.2 | 5.4 | 6.0 | 7.3 |
Varieties | ||||||||||||
HPW 349 | 74.0 | 72.9 | 81.2 | 72.7 | 14.92 | 13.93 | 15.95 | 13.79 | 71.6 | 70.8 | 85.2 | 79.2 |
HPW 368 | 82.4 | 81.9 | 92.1 | 82.7 | 15.81 | 15.59 | 18.04 | 15.67 | 80.1 | 80.0 | 96.0 | 88.4 |
HS 562 | 80.9 | 78.8 | 85.9 | 78.2 | 16.26 | 15.19 | 16.96 | 14.70 | 73.7 | 73.3 | 87.0 | 79.1 |
SEm ± | 1.1 | 1.1 | 101.9 | 89.7 | 0.23 | 0.23 | 0.35 | 0.37 | 1.1 | 1.1 | 1.5 | 1.6 |
CD (p = 0.05) | 3.3 | 3.2 | 95.1 | 81.9 | 0.70 | 0.69 | 1.05 | 1.11 | 3.2 | 3.4 | 4.4 | 4.9 |
Treatments | N Uptake (kg ha−1) | P Uptake (kg ha−1) | K Uptake (kg ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Palampur | Malan | Palampur | Malan | Palampur | Malan | |||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Cultivation practices | ||||||||||||
Reduced tillage | 67.3 | 68.9 | 67.6 | 72.5 | 13.97 | 15.13 | 14.97 | 16.19 | 70.0 | 71.4 | 72.4 | 74.4 |
Zero tillage | 63.8 | 64.3 | 61.1 | 68.3 | 13.15 | 14.08 | 13.27 | 15.04 | 68.3 | 68.7 | 66.5 | 71.7 |
Conventional tillage | 76.5 | 77.8 | 75.6 | 81.5 | 16.47 | 17.81 | 17.26 | 18.98 | 78.6 | 80.5 | 80.8 | 83.5 |
Natural Farming | 50.5 | 40.0 | 48.4 | 56.3 | 10.56 | 8.88 | 10.48 | 12.07 | 56.4 | 44.5 | 53.9 | 60.7 |
SEm ± | 1.7 | 1.4 | 1.9 | 1.4 | 0.40 | 0.30 | 0.31 | 0.28 | 1.8 | 1.3 | 1.4 | 1.7 |
CD (p = 0.05) | 5.9 | 4.7 | 6.7 | 5.0 | 1.40 | 1.04 | 1.08 | 0.98 | 6.1 | 4.5 | 4.9 | 5.7 |
Varieties | ||||||||||||
Sukara Dhan 1 (HPR 1156) | 64.1 | 62.4 | 63.0 | 70.0 | 13.28 | 13.86 | 13.83 | 15.38 | 66.7 | 65.1 | 67.5 | 71.5 |
Him Palam Dhan 1 (HPR 2656) | 61.1 | 60.3 | 60.0 | 64.8 | 12.41 | 12.80 | 12.97 | 14.12 | 66.0 | 64.8 | 66.6 | 69.3 |
Him Palam Lal Dhan 1 (HPR 2795) | 68.3 | 65.5 | 66.4 | 74.1 | 14.91 | 15.27 | 15.18 | 17.22 | 72.2 | 69.0 | 71.2 | 77.0 |
SEm ± | 1.3 | 1.1 | 1.6 | 1.3 | 0.21 | 0.34 | 0.33 | 0.30 | 1.0 | 1.2 | 1.3 | 1.4 |
CD (p = 0.05) | 4.0 | 3.3 | 4.7 | 4.0 | 0.63 | 1.02 | 0.99 | 0.91 | 2.9 | 3.6 | 3.9 | 4.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, A.; Manuja, S.; Kumar, S.; Hafeez, A.; Ali, B.; Poczai, P. Impact of Cultivation Practices and Varieties on Productivity, Profitability, and Nutrient Uptake of Rice (Oryza sativa L.) and Wheat (Triticum aestivum L.) Cropping System in India. Agriculture 2022, 12, 1678. https://doi.org/10.3390/agriculture12101678
Saini A, Manuja S, Kumar S, Hafeez A, Ali B, Poczai P. Impact of Cultivation Practices and Varieties on Productivity, Profitability, and Nutrient Uptake of Rice (Oryza sativa L.) and Wheat (Triticum aestivum L.) Cropping System in India. Agriculture. 2022; 12(10):1678. https://doi.org/10.3390/agriculture12101678
Chicago/Turabian StyleSaini, Ankit, Sandeep Manuja, Suresh Kumar, Aqsa Hafeez, Baber Ali, and Peter Poczai. 2022. "Impact of Cultivation Practices and Varieties on Productivity, Profitability, and Nutrient Uptake of Rice (Oryza sativa L.) and Wheat (Triticum aestivum L.) Cropping System in India" Agriculture 12, no. 10: 1678. https://doi.org/10.3390/agriculture12101678