Risk Assessment of Heavy Metals Contamination in Soil and Two Rice (Oryza sativa L.) Varieties Irrigated with Paper Mill Effluent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Description of Studied Rice Varieties
2.3. Sample Collection and Chemical Analysis
2.4. Data Analysis
2.5. Software and Tools
3. Results and Discussion
3.1. Characteristics of Effluent and Agricultural Soils
3.2. Growth and Productivity of Selected Rice Varieties
3.3. Heavy Metal Accumulation in Selected Rice Varieties
3.4. Health Risk Assessment of Heavy Metals Accumulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN WWAP. The United Nations World Water Development Report 3; UN WWAP: Geneva, Switzerland, 2012. [Google Scholar]
- Roy, S.; Garg, A.; Garg, S.; Tran, T.A. Advanced Industrial Wastewater Treatment and Reclamation of Water; Springer: Cham, Switzerland, 2022; ISBN 978-3-030-83810-2. [Google Scholar]
- Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Yasir, M.; Khan, A. Environmental and Health Impacts of Industrial Wastewater Effluents in Pakistan: A Review. Rev. Environ. Health 2019, 34, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Adelodun, B.; Kumar, P.; Odey, G.; Ajibade, F.O.; Ibrahim, R.G.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Kumar, V.; Adeyemi, K.A.; et al. A Safe Haven of SARS-CoV-2 in the Environment: Prevalence and Potential Transmission Risks in the Effluent, Sludge, and Biosolids. Geosci. Front. 2022, 13, 101373. [Google Scholar] [CrossRef]
- Uzma, S.; Azizullah, A.; Bibi, R.; Nabeela, F.; Muhammad, U.; Ali, I.; Rehman, Z.U.; Häder, D.P. Effects of Industrial Wastewater on Growth and Biomass Production in Commonly Grown Vegetables. Environ. Monit. Assess. 2016, 188, 328. [Google Scholar] [CrossRef]
- Kanwal, A.; Farhan, M.; Sharif, F.; Hayyat, M.U.; Shahzad, L.; Ghafoor, G.Z. Effect of Industrial Wastewater on Wheat Germination, Growth, Yield, Nutrients and Bioaccumulation of Lead. Sci. Rep. 2020, 10, 11361. [Google Scholar] [CrossRef] [PubMed]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Król, A.; Mizerna, K.; Bożym, M. An Assessment of PH-Dependent Release and Mobility of Heavy Metals from Metallurgical Slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef]
- Sintorini, M.M.; Widyatmoko, H.; Sinaga, E.; Aliyah, N. Effect of PH on Metal Mobility in the Soil. IOP Conf. Ser. Earth Environ. Sci. 2021, 737, 012071. [Google Scholar] [CrossRef]
- Campillo-Cora, C.; Conde-Cid, M.; Arias-Estévez, M.; Fernández-Calviño, D.; Alonso-Vega, F. Specific Adsorption of Heavy Metals in Soils: Individual and Competitive Experiments. Agronomy 2020, 10, 1113. [Google Scholar] [CrossRef]
- Lenart, A.; Wolny-Koładka, K. The Effect of Heavy Metal Concentration and Soil Ph on the Abundance of Selected Microbial Groups within Arcelormittal Poland Steelworks in Cracow. Bull. Environ. Contam. Toxicol. 2013, 90, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Bravo, S.; Amorós, J.A.; Pérez-de-los-Reyes, C.; García, F.J.; Moreno, M.M.; Sánchez-Ormeño, M.; Higueras, P. Influence of the Soil PH in the Uptake and Bioaccumulation of Heavy Metals (Fe, Zn, Cu, Pb and Mn) and Other Elements (Ca, K, Al, Sr and Ba) in Vine Leaves, Castilla-La Mancha (Spain). J. Geochem. Explor. 2017, 174, 79–83. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Lv, Y.; Liu, X.; Zhong, J.; Cui, X.; Zhang, M.; Ma, D.; Yan, X.; Zhu, X. Effects of Heavy Metals/Metalloids and Soil Properties on Microbial Communities in Farmland in the Vicinity of a Metals Smelter. Front. Microbiol. 2021, 12, 2347. [Google Scholar] [CrossRef] [PubMed]
- Rathnayake, I.V.N.; Megharaj, M.; Bolan, N.; Naidu, R. Tolerance of Heavy Metals by Gram Positive Soil Bacteria. Int. J. Environ. Eng. 2010, 2, 191–195. [Google Scholar]
- Chmielowska-Bąk, J.; Gzyl, J.; Rucińska-Sobkowiak, R.; Arasimowicz-Jelonek, M.; Deckert, J. The New Insights into Cadmium Sensing. Front. Plant Sci. 2014, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Shen, Z.; Dou, C.; Dou, Z.; Li, Y.; Gao, Y.; Sun, Q. Effects of Soil Properties on Heavy Metal Bioavailability and Accumulation in Crop Grains under Different Farmland Use Patterns. Sci. Rep. 2022, 12, 9211. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Shahbandeh, M. Rice—Statistics & Facts. Available online: https://worldpopulationreview.com/country-rankings/rice-production-by-country (accessed on 31 August 2022).
- Vici, G.; Perinelli, D.R.; Camilletti, D.; Carotenuto, F.; Belli, L.; Polzonetti, V. Nutritional Properties of Rice Varieties Commonly Consumed in Italy and Applicability in Gluten Free Diet. Foods 2021, 10, 1375. [Google Scholar] [CrossRef]
- Afrad, M.S.I.; Monir, M.B.; Haque, M.E.; Barau, A.A.; Haque, M.M. Impact of Industrial Effluent on Water, Soil and Rice Production in Bangladesh: A Case of Turag River Bank. J. Environ. Health Sci. Eng. 2020, 18, 825–834. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, V.; Kumar, P.; Kumar, P.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Kamyab, H.; Chelliapan, S. An Experimental Investigation on Phytoremediation Performance of Water Lettuce (Pistia stratiotes L.) for Pollutants Removal from Paper Mill Effluent. Water Env. Res. 2021, 93, 1543–1553. [Google Scholar] [CrossRef]
- Singh, V.; Singh, A.K.; Mohapatra, T.; Ellur, R.K. Pusa Basmati 1121–A Rice Variety with Exceptional Kernel Elongation and Volume Expansion after Cooking. Rice 2018, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Bharaj, T.S.; Mangat, G.S.; Kaur, R.; Singh, K.; Singh, N. PR 121: A New Semi-Dwarf High Yielding Variety of Rice (Oryza sativa L.). J. Res. (Punjab Agric. Univ.) 2014, 51, 202–203. [Google Scholar]
- Apha, A. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- AOAC International. AOAC Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Chromý, V.; Vinklárková, B.; Šprongl, L.; Bittová, M. The Kjeldahl Method as a Primary Reference Procedure for Total Protein in Certified Reference Materials Used in Clinical Chemistry. I. A Review of Kjeldahl Methods Adopted by Laboratory Medicine. Crit. Rev. Anal. Chem. 2015, 45, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kumar, V.; Thakur, R.K.; Kumar, P. Assessment of Heavy Metals Uptake by Cauliflower (Brassica oleracea Var. Botrytis) Grown in Integrated Industrial Effluent Irrigated Soils: A Prediction Modeling Study. Sci. Hortic. 2019, 257, 108682. [Google Scholar] [CrossRef]
- Kumar, P.; Eid, E.M.; Al-Huqail, A.A.; Širić, I.; Adelodun, B.; Abou Fayssal, S.; Valadez-Blanco, R.; Goala, M.; Ajibade, F.O.; Choi, K.S.; et al. Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes. Horticulturae 2022, 8, 316. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Eid, E.M.; Al-Huqail, A.A.; Adelodun, B.; Abou Fayssal, S.; Goala, M.; Arya, A.K.; Bachheti, A.; Andabaka, Ž.; et al. Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus Bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. J. Fungi 2022, 8, 452. [Google Scholar] [CrossRef] [PubMed]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture—FAO Irrigation and Drainage; FAO: Roma, Italy, 1985; Volume NO. 29. [Google Scholar]
- Balkhair, K.S.; Ashraf, M.A. Field Accumulation Risks of Heavy Metals in Soil and Vegetable Crop Irrigated with Sewage Water in Western Region of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, S32–S44. [Google Scholar] [CrossRef] [Green Version]
- Rengasamy, P.; Marchuk, A. Cation Ratio of Soil Structural Stability (CROSS). Soil Res. 2011, 49, 280–285. [Google Scholar] [CrossRef]
- Riemersma, S.; Little, J.; Ontkean, G.; Moskal-Hebert, T. Phosphorus Sources and Sinks in Watersheds: A Review. Alta. Soil Phosphorus Limits Proj. 2006, 5, 82. [Google Scholar]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium Toxicity in Plants: Impacts and Remediation Strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, N.L.; Singh, C.K.; Kumar Sarkar, S.; Singh, I.; Lal Dotaniya, M. Effect of Chromium (VI) Toxicity on Morpho-Physiological Characteristics, Yield, and Yield Components of Two Chickpea (Cicer arietinum L.) Varieties. PLoS ONE 2020, 15, e0243032. [Google Scholar] [CrossRef]
- Malakar, A.; Snow, D.D.; Ray, C. Irrigation Water Quality—A Contemporary Perspective. Water 2019, 11, 1482. [Google Scholar] [CrossRef] [Green Version]
- Shiyab, S. Phytoaccumulation of Copper from Irrigation Water and Its Effect on the Internal Structure of Lettuce. Agriculture 2018, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Murphy, T.; Phan, K.; Yumvihoze, E.; Irvine, K.; Wilson, K.; Lean, D.; Poulain, A.; Laird, B.; Chan, L.H.M. Effects of Arsenic, Iron and Fertilizers in Soil on Rice in Cambodia. J. Health Pollut. 2018, 8, 180910. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, Z.; Jin, M.; Ferré, T.P.A.; Wang, J.; Huang, J.; Wang, X. Effect of Sodium Chloride and Manganese in Irrigation Water on Cotton Growth. Agron. J. 2018, 110, 900–909. [Google Scholar] [CrossRef]
- Redondo-Gómez, S.; Andrades-Moreno, L.; Mateos-Naranjo, E.; Parra, R.; Valera-Burgos, J.; Aroca, R. Synergic Effect of Salinity and Zinc Stress on Growth and Photosynthetic Responses of the Cordgrass, Spartina Densiflora. J. Exp. Bot. 2011, 62, 5521–5530. [Google Scholar] [CrossRef]
- Azman, E.A.; Jusop, S.; Ishak, C.F.; Ismail, R. Increasing Rice Production Using Different Lime Sources on an Acid Sulphate Soil in Merbok, Malaysia. Pertanika J. Trop. Agric. Sci. 2014, 37, 223–247. [Google Scholar]
- King, A.E.; Ali, G.A.; Gillespie, A.W.; Wagner-Riddle, C. Soil Organic Matter as Catalyst of Crop Resource Capture. Front. Environ. Sci. 2020, 8, 50. [Google Scholar] [CrossRef]
- Duan, R.; Fedler, C.B. Preliminary Field Study of Soil TKN in a Wastewater Land Application System. Ecol. Eng. 2015, 83, 1–4. [Google Scholar] [CrossRef]
- Xu, X.; Du, X.; Wang, F.; Sha, J.; Chen, Q.; Tian, G.; Zhu, Z.; Ge, S.; Jiang, Y. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. Front. Plant Sci. 2020, 11, 904. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic Life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Jang, T.; Jeong, H.; Park, S. Assessment of Growth and Yield Components of Rice Irrigated with Reclaimed Wastewater. Agric. Water Manag. 2014, 138, 17–25. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, C.; Lin, J.; Liu, J.; Liu, B.; Wang, J.; Huang, A.; Li, H.; Zhao, T. OsMPH1 Regulates Plant Height and Improves Grain Yield in Rice. PLoS ONE 2017, 12, e0180825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Sheng, Z.; Cai, Y.; Li, Q.; Wei, X.; Xie, L.; Jiao, G.; Shao, G.; Tang, S.; Wang, J.; et al. Rice Morphogenesis and Chlorophyll Accumulation Is Regulated by the Protein Encoded by Nrl3 and Its Interaction with Nal9. Front. Plant Sci. 2019, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gao, J.; Wang, B.; Xu, J.; Fu, X.; Han, H.; Wang, L.; Zhang, W.; Deng, Y.; Wang, Y.; et al. Rice Carotenoid Biofortification and Yield Improvement Conferred by Endosperm-Specific Overexpression of OsGLK1. Front. Plant Sci. 2022, 13, 951605. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.; Houborg, R.; McCabe, M.F. Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.). Agronomy 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Ordonio, R.L.; Matsuoka, M. Increasing Resistant Starch Content in Rice for Better Consumer Health. Proc. Natl. Acad. Sci. USA 2016, 113, 12616–12618. [Google Scholar] [CrossRef] [Green Version]
- FAO/WHO. Report of the Thirty Eight Session of the Codex Committee on Food Hygiene; FAO: Rome, Italy, 2007. [Google Scholar]
- FAO/WHO. Report of the Twenty Eighth Session; ALINORM 05/28/12; FAO: Rome, Italy, 2005. [Google Scholar]
- USDA. National Food Safety Standard of Maximum Levels of Contaminants in Foods; USDA: Washington, DC, USA, 2018.
- Khan, Z.I.; Mansha, A.; Saleem, M.H.; Tariq, F.; Ahmad, K.; Ahmad, T.; Awan, M.U.F.; Abualreesh, M.H.; Alatawi, A.; Ali, S. Trace Metal Accumulation in Rice Variety Kainat Irrigated with Canal Water. Sustainability 2021, 13, 13739. [Google Scholar] [CrossRef]
- Hu, A.Y.; Zheng, M.M.; Sun, L.M.; Zhao, X.Q.; Shen, R.F. Ammonium Alleviates Manganese Toxicity and Accumulation in Rice by Down-Regulating the Transporter Gene OsNramp5 through Rhizosphere Acidification. Front. Plant Sci. 2019, 10, 1194. [Google Scholar] [CrossRef] [Green Version]
- Peres, T.V.; Schettinger, M.R.C.; Chen, P.; Carvalho, F.; Avila, D.S.; Bowman, A.B.; Aschner, M. Manganese-Induced Neurotoxicity: A Review of Its Behavioral Consequences and Neuroprotective Strategies. BMC Pharmacol. Toxicol. 2016, 17, 57. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R.; Hadi, F.; Jan, A.U.; Ditta, A. Straw Incorporation in Contaminated Soil Enhances Drought Tolerance but Simultaneously Increases the Accumulation of Heavy Metals in Rice. Sustainability 2022, 14, 10578. [Google Scholar] [CrossRef]
- Lien, K.W.; Pan, M.H.; Ling, M.P. Levels of Heavy Metal Cadmium in Rice (Oryza sativa L.) Produced in Taiwan and Probabilistic Risk Assessment for the Taiwanese Population. Environ. Sci. Pollut. Res. 2021, 28, 28381–28390. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Hong, C.; Tong, W.; Xu, M.; Huang, C.; Yin, H.; Lin, Y.; Fu, Q. Health Risk Assessment of Heavy Metal Pollution in a Soil-Rice System: A Case Study in the Jin-Qu Basin of China. Sci. Rep. 2020, 10, 11490. [Google Scholar] [CrossRef] [PubMed]
Parameters | Irrigation Water Sources | Limit for Surface Disposal a | Limit for Inland Irrigation b | ||
---|---|---|---|---|---|
Borewell | Paper Mill Effluent | Kali River Water | |||
pH | 7.56 ± 0.11 b | 8.14 ± 0.24 c | 6.09 ± 0.37 a | 5.50–9.00 | 5.50–9.00 |
Electricidal Conductivity (EC: dS/m) | 0.61 ± 0.35 a | 5.30 ± 0.09 c | 4.07 ± 0.18 b | Na | Na |
Total Dissolved Solids (TDS: mg/L) | 110.36 ± 9.12 a | 1409.62 ± 15.02 c | 850.04 ± 29.05 b | 1900.00 | Na |
Biochemical Oxygen Demand (BOD: mg/L) | 4.05 ± 0.35 a | 810.09 ± 20.38 c | 280.26 ± 11.47 b | 100.00 | 30.00 |
Chemical Oxygen Demand (COD: mg/L) | 8.20 ± 0.26 a | 1610.50 ± 18.01 c | 709.45 ± 17.60 b | 250.00 | 250.00 |
Total Kjeldahl’s Nitrogen (TKN: mg/L) | 8.12 ± 0.54 a | 110.43 ± 3.70 c | 140.06 ± 10.31 b | 100.00 | 100.00 |
Total Potassium (K: mg/L) | 6.41 ± 2.29 a | 106.93 ± 4.58 c | 82.24 ± 7.40 b | Na | Na |
Total Phosphorus (p: mg/L) | 4.46 ± 0.18 a | 98.20 ± 5.07 c | 31.03 ± 3.17 b | Na | 5.00 |
Cadmium (Cd: mg/L) | Bdl | 0.69 ± 0.08 a | 3.70 ± 0.46 b | 2.00 | 2.00 |
Chromium (Cr: mg/L) | Bdl | 5.43 ± 0.12 b | 2.50 ± 0.23 a | 2.00 | Na |
Copper (Cu: mg/L | 0.03 ± 0.01 a | 1.90 ± 0.06 b | 4.85 ± 0.39 c | 3.00 | 3.00 |
Iron (Fe: mg/L) | 0.62 ± 0.03 a | 5.62 ± 0.17 b | 11.07 ± 0.74 c | 1.00 | 3.00 |
Manganese (Mn: mg/L) | 0.38 ± 0.04 a | 3.88 ± 0.21 b | 6.28 ± 0.29 c | 1.00 | 2.00 |
Zinc (Zn: mg/L) | 0.26 ± 0.02 a | 2.54 ± 0.19 b | 9.64 ± 0.41 c | 15.00 | 5.00 |
Parameters ^ | Irrigated Soils | ||
---|---|---|---|
Borewell | Paper Mill Effluent | Kali River Water | |
pH | 7.24 ± 0.05 b | 7.69 ± 0.07 c | 6.80 ± 0.20 a |
Electricidal Conductivity (EC: dS/m) | 2.27 ± 0.16 a | 4.80 ± 0.22 c | 3.10 ± 0.19 b |
Organic Matter (OM: %) | 2.86 ± 0.12 a | 5.10 ± 0.42 bc | 4.74 ± 0.34 b |
Total Kjeldahl’s Nitrogen (TKN: mg/kg) | 124.16 ± 3.09 a | 261.20 ± 10.08 c | 210.42 ± 7.25 b |
Potassium (K: mg/kg) | 56.72 ± 8.26 a | 220.89 ± 6.07 c | 190.65 ± 10.81 b |
Total Phosphorus (TP: mg/kg) | 34.61 ± 5.32 a | 128.48 ± 3.31 c | 110.29 ± 8.03 b |
Cadmium (Cd: mg/kg) | 0.21 ± 0.05 a | 5.10 ± 0.12 b | 6.16 ± 1.15 bc |
Chromium (Cr: mg/kg) | 1.07 ± 0.09 a | 9.89 ± 0.21 c | 4.32 ± 0.38 b |
Copper (Cu: mg/kg) | 2.90 ± 0.14 a | 16.43 ± 0.10 b | 29.60 ± 2.42 c |
Iron (Fe: mg/kg) | 16.07 ± 0.26 a | 47.21 ± 1.03 b | 59.07 ± 3.95 c |
Manganese (Mn: mg/kg) | 1.50 ± 0.09 a | 8.43 ± 1.04 b | 11.51 ± 0.46 c |
Zinc (Zn: mg/kg) | 2.43 ± 0.12 a | 12.08 ± 0.67 b | 18.02 ± 1.28 c |
Parameters | Irrigated Soils and Rice Varieties | |||||
---|---|---|---|---|---|---|
Borewell | Paper Mill Effluent | Kali River | ||||
PB-1121 | PR-121 | PB-1121 | PR-121 | PB-1121 | PR-121 | |
Plant Height (cm) | 113.47 ± 5.02 c | 93.82 ± 3.68 a | 118.38 ± 7.15 c | 97.64 ± 2.40 ab | 123.48 ± 4.86 cd | 98.83 ± 2.02 b |
Total Chlorophyll (mg/g) | 5.09 ± 0.13 a | 5.12 ± 0.10 a | 5.86 ± 0.22 bc | 5.45 ± 0.17 b | 6.70 ± 0.25 d | 6.64 ± 0.17 d |
Leaf Carotenoids (mg/g) | 0.51 ± 0.05 a | 0.53 ± 0.09 a | 0.60 ± 0.07 ab | 0.57 ± 0.04 a | 0.67 ± 0.08 b | 0.63 ± 0.05 b |
Starch Content (%) | 60.70 ± 3.70 a | 62.76 ± 2.10 a | 67.39 ± 1.82 b | 69.98 ± 2.28 b | 71.08 ± 2.05 bc | 72.60 ± 1.63 c |
Amylose Content (%) | 21.01 ± 1.20 a | 19.49 ± 0.97 a | 23.35 ± 1.70 ab | 20.09 ± 0.69 b | 25.10 ± 1.32 bc | 20.28 ± 1.24 bc |
Crop Yield (kg/ha) | 3710.50 ± 150.40 a | 5244.02 ± 69.10 d | 4050.92 ± 81.53 b | 5566.12 ± 131.09 e | 4270.20 ± 75.12 c | 5830.58 ± 63.10 f |
Straw Yield (kg/ha) | 5110.17 ± 86.53 a | 6035.20 ± 80.18 c | 5318.17 ± 30.85 b | 6481.30 ± 45.73 d | 5472.05 ± 93.90 b | 6683.76 ± 61.26 e |
Rice Parts | Heavy Metals | Irrigated Soils and Rice Varieties | |||||
---|---|---|---|---|---|---|---|
Borewell | Paper Mill Effluent | Kali River | |||||
PB-1121 | PR-121 | PB-1121 | PR-121 | PB-1121 | PR-121 | ||
Straw | Cd | 0.19 ± 0.02 a | 0.20 ± 0.03 a | 0.23 ± 0.02 a | 0.25 ± 0.03 ab | 0.27 ± 0.04 b | 0.31 ± 0.02 b |
Cr | 0.82 ± 0.05 a | 0.92 ± 0.08 ab | 1.40 ± 0.13 c | 1.51 ± 0.09 c | 1.10 ± 0.15 b | 1.22 ± 0.07 b | |
Cu | 13.52 ± 0.28 a | 14.10 ± 0.51 a | 18.16 ± 1.02 b | 20.45 ± 0.92 b | 21.67 ± 1.36 bc | 23.04 ± 0.65 c | |
Fe | 178.76 ± 6.91 a | 212.65 ± 10.75 b | 254.02 ± 12.08 c | 272.18 ± 20.78 c | 290.53 ± 12.45 d | 310.98 ± 21.04 d | |
Mn | 78.54 ± 3.35 b | 62.40 ± 6.02 a | 110.78 ± 11.21 cd | 90.65 ± 9.42 c | 112.67 ± 8.22 d | 105.43 ± 7.60 cd | |
Zn | 19.26 ± 0.70 a | 21.58 ± 0.56 a | 25.02 ± 1.40 b | 27.02 ± 1.01 b | 28.66 ± 0.95 bc | 30.32 ± 1.24 c | |
Grain | Cd | 0.03 ± 0.01 a | 0.04 ± 0.02 a | 0.06 ± 0.02 ab | 0.07 ± 0.01 b | 0.09 ± 0.02 bc | 0.10 ± 0.02 c |
Cr | 0.15 ± 0.02 a | 0.16 ± 0.03 a | 0.39 ± 0.06 b | 0.41 ± 0.04 b | 0.31 ± 0.02 b | 0.36 ± 0.05 c | |
Cu | 1.60 ± 0.05 a | 1.68 ± 0.04 a | 1.73 ± 0.04 ab | 1.82 ± 0.12 b | 2.02 ± 0.09 c | 2.10 ± 0.11 c | |
Fe | 14.09 ± 0.36 a | 15.04 ± 0.82 a | 20.11 ± 1.27 b | 21.18 ± 0.96 b | 22.30 ± 1.55 bc | 24.29 ± 0.83 c | |
Mn | 1.72 ± 0.20 ab | 1.48 ± 0.13 a | 2.34 ± 0.32 c | 2.05 ± 0.07 c | 2.81 ± 0.16 d | 2.57 ± 0.29 c | |
Zn | 1.87 ± 0.03 a | 1.92 ± 0.09 a | 2.52 ± 0.14 b | 2.69 ± 0.08 b | 3.10 ± 0.25 c | 3.21 ± 0.08 c |
Heavy Metals | Health Risk Variables | Irrigated Soils | |||||
---|---|---|---|---|---|---|---|
Borewell | Paper Mill Effluent | Kali River | |||||
PB-1121 | PR-121 | PB-1121 | PR-121 | PB-1121 | PR-121 | ||
Cadmium (Cd) | THQ (Child) | 0.156 | 0.175 | 0.212 | 0.231 | 0.298 | 0.387 |
THQ (Adult) | 0.124 | 0.132 | 0.148 | 0.156 | 0.172 | 0.280 | |
Chromium (Cr) | THQ (Child) | 0.147 | 0.150 | 0.221 | 0.228 | 0.197 | 0.292 |
THQ (Adult) | 0.120 | 0.121 | 0.152 | 0.155 | 0.141 | 0.148 | |
Copper (Cu) | THQ (Child) | 0.136 | 0.137 | 0.138 | 0.140 | 0.145 | 0.147 |
THQ (Adult) | 0.115 | 0.116 | 0.116 | 0.117 | 0.119 | 0.120 | |
Iron (Fe) | THQ (Child) | 0.019 | 0.120 | 0.027 | 0.028 | 0.019 | 0.032 |
THQ (Adult) | 0.018 | 0.019 | 0.011 | 0.012 | 0.013 | 0.024 | |
Manganese (Mn) | THQ (Child) | 0.115 | 0.099 | 0.156 | 0.137 | 0.187 | 0.171 |
THQ (Adult) | 0.049 | 0.042 | 0.067 | 0.059 | 0.080 | 0.073 | |
Zinc (Zn) | THQ (Child) | 0.116 | 0.016 | 0.018 | 0.018 | 0.019 | 0.012 |
THQ (Adult) | 0.012 | 0.013 | 0.013 | 0.014 | 0.014 | 0.014 | |
HRI | Child | 0.689 | 0.697 | 0.772 | 0.782 | 0.865 | 1.041 |
Adult | 0.438 | 0.443 | 0.507 | 0.513 | 0.539 | 0.659 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Huqail, A.A.; Kumar, P.; Eid, E.M.; Adelodun, B.; Abou Fayssal, S.; Singh, J.; Arya, A.K.; Goala, M.; Kumar, V.; Širić, I. Risk Assessment of Heavy Metals Contamination in Soil and Two Rice (Oryza sativa L.) Varieties Irrigated with Paper Mill Effluent. Agriculture 2022, 12, 1864. https://doi.org/10.3390/agriculture12111864
AL-Huqail AA, Kumar P, Eid EM, Adelodun B, Abou Fayssal S, Singh J, Arya AK, Goala M, Kumar V, Širić I. Risk Assessment of Heavy Metals Contamination in Soil and Two Rice (Oryza sativa L.) Varieties Irrigated with Paper Mill Effluent. Agriculture. 2022; 12(11):1864. https://doi.org/10.3390/agriculture12111864
Chicago/Turabian StyleAL-Huqail, Arwa A., Pankaj Kumar, Ebrahem M. Eid, Bashir Adelodun, Sami Abou Fayssal, Jogendra Singh, Ashish Kumar Arya, Madhumita Goala, Vinod Kumar, and Ivan Širić. 2022. "Risk Assessment of Heavy Metals Contamination in Soil and Two Rice (Oryza sativa L.) Varieties Irrigated with Paper Mill Effluent" Agriculture 12, no. 11: 1864. https://doi.org/10.3390/agriculture12111864
APA StyleAL-Huqail, A. A., Kumar, P., Eid, E. M., Adelodun, B., Abou Fayssal, S., Singh, J., Arya, A. K., Goala, M., Kumar, V., & Širić, I. (2022). Risk Assessment of Heavy Metals Contamination in Soil and Two Rice (Oryza sativa L.) Varieties Irrigated with Paper Mill Effluent. Agriculture, 12(11), 1864. https://doi.org/10.3390/agriculture12111864