Antinutritional Nitrogen Compounds Content in Potato (Solanum tuberosum L.) Tubers Depending on the Genotype and Production System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Field Experiment
2.3. Sample Preparation for Laboratory Testing
2.4. Procedure for Nitrates and Nitrites Determination
- E—SEM measuring cell composed of ionoselective electrodes and references in the test solution (V)
- Eo—normal potential of the ion-selective electrode depends mainly on the activity of the internal electrode solution and the type of reference electrode (V)
- aj—activity of the determined ion
- n—value of the measured ion
- R—is the universal gas constant: R = 8.31446261815324 J K−1 mol−1
- T—is the temperature in Kelvins
- F—is the Faraday constant, the number of coulombs per mole of electrons: F = 96,485.3321233100184 C mol−1
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alamar, M.C.; Tosetti, R.; Landahl, S.; Bermejo, A.; Terry, L.A. Assuring potato tuber quality during storage: A future perspective. Front. Plant Sci. 2017, 8, 2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlingame, B.; Mouillé, B.; Charrondiere, R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Comp. Anal. 2009, 22, 494–502. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Jańczak-Pieniążek, M.; Migut, D.; Skrobacz, K.; Piechowiak, T.; Pawlak, R.; Balawejder, M. Physiological and biochemical properties of potato (Solanum tuberosum L.) in response to ozone-induced oxidative stress. Agronomy 2020, 10, 1745. [Google Scholar] [CrossRef]
- Rymuza, K.; Gugała, M.; Zarzecka, K.; Sikorska, A.; Findura, P.; Malaga-Toboła, U.; Radzka, E. The Effect of Light Exposures on the Content of Harmful Substances in Edible Potato Tuber. Agriculture 2020, 10, 139. [Google Scholar] [CrossRef]
- Rytel, E. Chosen pro- and anti-nutritional substances in potatoes and changes in theircontent during potato processing for food products. Zesz. Probl. Post. Nauk Rol. 2010, 557, 43–61. (In Polish) [Google Scholar]
- Wierzbicka, A. Mineral content of potato tubers grown in the organic system their nutritional value and interaction. J. Res. Appl. Agric. Eng. 2012, 57, 188–192. [Google Scholar]
- Hmelak Gorenjak, A.; Cencič, A. Nitrate in vegetables and their impact on human health. A review. Acta Aliment. 2013, 42, 158–172. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Walker, R. Nitrates, nitrites and N-nitrosocompounds: A Review of the Occurrence in Food and Diet and the Toxicological Implications. Food Addit. Contam. 1990, 7, 717–768. [Google Scholar] [CrossRef]
- Tamme, T.; Reinik, M.; Roasto, M.; Juhkam, K.; Tenno, T.; Kiis, A. Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. Food Addit. Contam. 2006, 23, 355–361. [Google Scholar] [CrossRef]
- Thomson, B.M.; Nokes, C.J.; Cressey, P.J. Intake and risk assessment of nitrate and nitrite from New Zealand foods and drinking water. Food Addit. Contam. 2007, 24, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Commission Regulation (EC) No 1822/2005 of 8 November 2005 amending Regulation (EC) No 466/2001 as regards nitrate in certain vegetables. Off. J. Eur. 2005, 48, 11–13. [Google Scholar]
- JECFA. Commission Regulation No. 563/2002 of 2 April 2002 amending Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs. FAO/WHO Expert Committee on Food Additives (JECFA). Off. J. Eur. Communities 2002, 5, 6. [Google Scholar]
- Nader, M.; Hosseininezhad, B.; Berizi, E.; Mazloomi, S.M.; Hosseinzadeh, S.; Zare, M.; Ferrante, M. The residual nitrate and nitrite levels in meat products in Iran: A systematic review, meta-analysis and health risk assessment. Environ. Res. 2022, 207, 112–180. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, D.; Paris, R. Effect of organic potato farming on human and environmental health and benefits from new plant breeding techniques. Is it only a matter of public acceptance? Sustainability 2016, 8, 1054. [Google Scholar] [CrossRef] [Green Version]
- Van Dingenen, J.; Hanzalova, K.; Salem, M.A.A.; Abel, C.; Seibert, T.; Giavalisco, P.; Wahl, V. Limited nitrogen availability has cultivar-dependent effects on potato tuber yield and tuber quality traits. Food Chem. 2019, 288, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, A.; Zarzecka, K.; Mystkowska, I.; Gugala, M. Wpływ użyźniacza glebowego UGmax na plon frakcji handlowej oraz zawartość azotu białkowego i azotanów w bulwach ziemniaka (Solanum tuberosum L.). Zesz. Probl. Postępów Nauk. Rol. 2016, 585, 3–11. (In Polish) [Google Scholar]
- Bourn, D.; Prescott, J. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit. Rev. Food Sci. Nutr. 2002, 42, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.; Mølgaard, J.P. Organic agriculture: Does it enhance or reduce the nutritional value of plant foods? J. Sci. Food Agric. 2001, 81, 924–931. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Soratto, R.P.; Souza, E.; Job, A. Nutrient uptake and removal by potato cultivars as affected by phosphate fertilization of soils with different levels of phosphorus availability. Rev. Bras. Ciência Solo 2017, 41, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Zarzyńska, K.; Wierzbicka, A.; Grudzińska, M. Ekologiczna produkcja ziemniaka gwarancją jego cech prozdrowotnych. Biul. Inst. Hod. I Aklim. Roślin. 2016, 279, 77–87. (In Polish) [Google Scholar]
- Tatarowska, B.; Milczarek, D.; Wszelaczyńska, E.; Pobereżny, J.; Keutgen, N.; Keutgen, A.J.; Flis, B. Carotenoids variability of potato tubers in relation to genotype, growing location and year. Am. J. Potato Res. 2019, 96, 493–504. [Google Scholar] [CrossRef] [Green Version]
- PN-EN ISO/IEC 17065:2013-03; General Requirements for Units Operating Product Certification Systems. International Organization for Standardization (ISO): Geneva, Switzerland, 1996.
- Keutgen, A.J.; Wszelaczyńska, E.; Pobereżny, J.; Przewodowska, A.; Przewodowski, W.; Milczarek, D.; Keutgen, N. Antioxidant properties of potato tubers (Solanum tuberosum L.) as a consequence of genetic potential and growing conditions. PLoS ONE 2019, 14, e0222976. [Google Scholar] [CrossRef] [PubMed]
- Baker, W.H.; Thompson, T.L. Determination of nitrate-nitrogen in plant samples by selective ion electrode. Plant Anal. Ref. Proc. S. 1992, 368, 13–16. [Google Scholar]
- Trawczynski, C. Wpływ odmiany i warunków pogodowych okresu wegetacji na zawartość wybranych składników odżywczych i antyżywieniowych w bulwach ziemniaka. Acta Agrophys. 2016, 23, 119–128. [Google Scholar]
- Djaman, K.; Sanogo, S.; Koudahe, K.; Allen, S.; Saibou, A.; Essah, S. Characteristics of Organically Grown Compared to Conventionally Grown Potato and the Processed Products: A Review. Sustainability 2021, 13, 6289. [Google Scholar] [CrossRef]
- Murawa, D.; Banaszkiewicz, T.; Majewska, E.; Błaszczuk, B.; Sulima, J. Zawartość azotanów (III) i (V) w wybranych gatunkach warzyw i ziemniakach dostępnych w handlu w Olsztynie w latach 2003–2004. Brom. Chem. Toksykol. 2008, 41, 67–71. (In Polish) [Google Scholar]
- Tietze, M.; Burghard, A.; Brqgiel, P.; Mac, J. Content of nitrosamines in foodstuff. Annales UMCS Lublinie Sec. EE 2007, 25, 71–77. (In Polish) [Google Scholar]
- Marks, N. Content of nitrates, nitrites and heavy metals in potato tubers depending on their storage period duration. Inż. Rol. 2009, 1, 183–187. (In Polish) [Google Scholar]
- Wadas, W.; Teczycka, T.; Borsiak-Marciniak, I. Effect of fertilization with multinutrient complex fertilizers on tuber quality of very Early potato cultivars. Acta Sci. Pol. Hort. Cultus. 2012, 11, 27–41. [Google Scholar]
- Jarych-Szyszka, M. Influence of the nitrogen fertilization on nitrate content in potato tubers. Żywność Nauka Technol. Jakość 2006, 2, 76–84. (In Polish) [Google Scholar]
- Peksa, A.G.; Gotubowska, A. Aniotowski, G. Lisifiska, and E. Rytel. Changes of glycoalkaloids and nitrates content in potatoes during chip processing. Food Chem. 2006, 97, 151–156. [Google Scholar] [CrossRef]
- Mozolewski, W.; Smoczyński, S. Effect of culinary processes on the content of nitrates and nitrites in potato. Pak. J. Nutr. 2004, 3, 357–361. [Google Scholar]
- Grudzińska, M.; Czerko, Z.; Zarzyńska, K.; Borowska-Komenda, M. Bioactive compounds in potato tubers: Effects of farming system, cooking method, and flesh color. PLoS ONE 2016, 11, e0153980. [Google Scholar] [CrossRef] [Green Version]
- Hajšlová, J.; Schulzova, V.; Slanina, P.; Janne, K.; Hellenäs, K.E.; Andersson, C.H. Quality of organically and conventionally grown potatoes: Four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Addit. Contam. 2005, 22, 514–534. [Google Scholar] [CrossRef]
- Rutkowska, G. Potatoes and carrots with organic and conventional farms. Przem. Ferm. Ow-Warz. 2005, 5, 20–21. (In Polish) [Google Scholar]
- Lachman, J.; Hamouz, K. The effect of selected factors on the content of protein and nitrates in potato tubers. Plant Soil Environ. 2005, 51, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Hamouz, K.; Lachman, J.; Dvorák, P.; Pivec, V. The effect of ecological growing on the potatoes yield and quality. Plant Soil Environ. 2005, 51, 397. [Google Scholar] [CrossRef] [Green Version]
- Wierzbicka, A.; Mazurczyk, W.; Wroniak, J. Effect of nitrogen fertilization and harvest date on the yield and quality of selected features of early potato tubers cultivars. Zesz. Probl. Post. Nauk Rol. 2008, 530, 207–216. (In Polish) [Google Scholar]
- Meise, P.; Seddig, S.; Uptmoor, R.; Ordon, F.; Schum, A. Assessment of yield and yield components of starch potato cultivars (Solanum tuberosum L.) under nitrogen deficiency and drought stress conditions. Potato Res. 2019, 62, 193–220. [Google Scholar] [CrossRef]
- Meng, C.; Huan, D.; Zhao, H.M.; Li, S.; Li, H.; Li, Y.W.; Mo, C.H. Nitrate supply decreases uptake and accumulation of ciprofloxacin in Brassica parachinensis. J. Haz. Mat. 2021, 403, 123803. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, S.; Pandino, G.I.; Mauromicale, G. Wpływ na jakość bulw systemu ekologicznego w porównaniu z konwencjonalnym systemem uprawy ziemniaka wczesnej uprawy. J. Food Comp. Analy. 2017, 62, 189–196. [Google Scholar] [CrossRef]
- Du, S.T.; Zhang, Y.S.; Lin, X.Y. Accumulation of nitrate in vegetables and its possible implications to human health. Agricult. Sci. China 2007, 6, 1246–1255. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Średnicka-Tober, D.; Hallmann, E.; Kopczyńska, K.; Zarzyńska, K. The impact of organic vs. conventional agricultural practices on selected quality features of eight potato cultivars. Agronomy 2019, 9, 799. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Rychcik, B.; Światły, A. The effect of different production systems on the content of micronutrients and trace elements in potato tubers. Acta Agric. Scandinav. Sect. B—Soil Plant Sci. 2018, 68, 701–708. [Google Scholar] [CrossRef]
- Elrys, A.S.; Abdo, A.I.; Desoky, E.S.M. Potato tubers contamination with nitrate under the influence of nitrogen fertilizers and spray with molybdenum and salicylic acid. Environ. Sci. Poll. Res. 2018, 25, 7076–7089. [Google Scholar] [CrossRef]
- Elrys, A.S.; El-Maati, M.F.A.; Abdel-Hamed, E.M.W.; Arnaout, S.M.; El-Tarabily, K.A.; Desoky, E.S.M. Mitigate nitrate contamination in potato tubers and increase nitrogen recovery by combining dicyandiamide, moringa oil and zeolite with nitrogen fertilizer. Ecotoxicol. Environ. Saf. 2021, 209, 111839. [Google Scholar] [CrossRef]
- Rembiałkowska, E. Quality of plant products from organic agriculture. J. Sci. Food Agric. 2007, 87, 2757–2762. [Google Scholar] [CrossRef]
- Nurmanov, Y.T.; Chernenok, V.G.; Kuzdanova, R.S. Potato in response to nitrogen nutrition regime and nitrogen fertilization. Field Crops Res. 2019, 231, 115–121. [Google Scholar] [CrossRef]
- Pobereżny, J.; Wszelaczyńska, E.; Wichrowska, D.; Jaskulski, D. Content of nitrates in potato tubers depending on the organic matter, soil fertilizer, cultivation simplifications applied and storage. Chil. J. Agric. Res. 2015, 75, 42–49. [Google Scholar]
- Pussemier, L.; Larondelle, Y.; van Peteghem, C.; Huyghebaert, A. Chemical safety of conventionally and organically produced foodstuffs: A tentative comparison under Belgian conditions. Food Control 2006, 17, 14–21. [Google Scholar] [CrossRef]
- Woli, P.; Hoogenboom, G. Simulating weather effects on potato yield, nitrate leaching, and profit margin in the US Pacific Northwest. Agric. Water Manag. 2018, 201, 177–187. [Google Scholar] [CrossRef]
- Rogozińska, I.; Pawelzik, E.; Poberezny, J.; Delgado, E. The effect of different factors on the content of nitrate in some potato varieties. Potato Res. 2005, 48, 167–180. [Google Scholar] [CrossRef]
Genotype | Nitrates | Nitrites | ||||
---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2014 | 2015 | 2016 | |
13-VIII-10 | 231.5 ± 57.9 e | 223.9 ± 57.0 e | 154.1 ± 81.8 bcde | 3.4 ± 0.9 abc | 3.7 ± 1.2 abc | 6.3 ± 2.7 d |
13-VIII-27 | 211.5 ± 52.1 e | 211.5 ± 60.0 e | 79.6 ± 67.8 ab | 4.1 ± 1.8 bcd | 4.2 ± 2.0 bcd | 3.2 ± 1.9 abc |
TG-97–403 | 174.5 ± 58.4 cde | 171.6 ± 69.8 cde | 54.4 ± 40.9 a | 2.1 ± 0.8 ab | 1.8 ± 1.1 a | 2.2 ± 1.4 abc |
13-VIII-45 | 190.4 ± 51.2 de | 193.4 ± 64.5 de | 67.5 ± 49.0 ab | 2.6 ± 1.1 abc | 2.7 ± 1.2 abc | 3.4 ± 1.5 abc |
13-VIII-49 | 195.4 ± 24.5 de | 194.8 ± 26.6 de | 91.2 ± 68.2 abc | 2.3 ± 0.7 ab | 2.3 ± 0.8 ab | 4.2 ± 1.7 abc |
13-VIII-50 | 199.1 ± 77.0 e | 194.5 ± 88.6 e | 86.8 ± 44.9 abc | 3.2 ± 1.1 abc | 3.3 ± 1.2 abc | 3.6 ± 1.0 abc |
13-VIII-60 | 202.7 ± 52.3 e | 205.8 ± 65.6 e | 76.8 ± 45.5 ab | 2.7 ± 1.6 abc | 2.8 ± 1.8 abc | 2.8 ± 1.8 abc |
Jelly | 184.3 ± 63.8 de | 186.1 ± 75.3 de | 79.4 ± 68.7 ab | 2.8 ± 2.5 abc | 2.8 ± 2.5 abc | 2.9 ± 1.0 abc |
Satina | 196.0 ± 86.0 de | 194.6 ± 97.6 de | 89.0 ± 18.6 abc | 2.0 ± 1.3 ab | 1.9 ± 1.6 ab | 3.4 ± 1.8 abc |
Tajfun | 218.2 ± 60.3 e | 221.8 ± 69.2 e | 110.8 ± 70.8 a–d | 3.9 ± 1.9 abc | 4.1 ± 2.0 a–d | 4.7 ± 1.6 cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wszelaczyńska, E.; Pobereżny, J.; Keutgen, A.J.; Keutgen, N.; Gościnna, K.; Milczarek, D.; Tatarowska, B.; Flis, B. Antinutritional Nitrogen Compounds Content in Potato (Solanum tuberosum L.) Tubers Depending on the Genotype and Production System. Agronomy 2022, 12, 2415. https://doi.org/10.3390/agronomy12102415
Wszelaczyńska E, Pobereżny J, Keutgen AJ, Keutgen N, Gościnna K, Milczarek D, Tatarowska B, Flis B. Antinutritional Nitrogen Compounds Content in Potato (Solanum tuberosum L.) Tubers Depending on the Genotype and Production System. Agronomy. 2022; 12(10):2415. https://doi.org/10.3390/agronomy12102415
Chicago/Turabian StyleWszelaczyńska, Elżbieta, Jarosław Pobereżny, Anna J. Keutgen, Norbert Keutgen, Katarzyna Gościnna, Dorota Milczarek, Beata Tatarowska, and Bogdan Flis. 2022. "Antinutritional Nitrogen Compounds Content in Potato (Solanum tuberosum L.) Tubers Depending on the Genotype and Production System" Agronomy 12, no. 10: 2415. https://doi.org/10.3390/agronomy12102415