Temporal Analysis of Candidatus Liberibacter asiaticus in Citrandarin Genotypes Indicates Unstable Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and CLas Infection
2.2. Sampling
2.3. DNA Extraction and RT-qPCR Analysis
2.4. Determination of the Cycle Threshold (CT) for the Detection and Quantification of CLas
2.5. Starch Quantification
2.6. Callose Visualization and Quantification
2.7. Statistical Analysis
3. Results
3.1. CLas Detection and Quantification in Valencia HLB-Diseased Plants
3.2. Temporal Infection of CLas in Top-Grafted Genotypes
3.3. Physiological Response of Citrandarins to CLas Infection Based on Starch Accumulation and Callose Deposition
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bassanezi, R.B.; Lopes, S.A.; de Miranda, M.P.; Wulff, N.A.; Volpe, H.X.L.; Ayres, A.J. Overview of Citrus Huanglongbing Spread and Management Strategies in Brazil. Trop. Plant Pathol. 2020, 45, 251–264. [Google Scholar] [CrossRef]
- Bové, J.M. Huanglongbing: A Destructive, Newly-Emerging, Century-Old Disease of Citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Folimonova, S.Y.; Achor, D.S. Early Events of Citrus Greening (Huanglongbing) Disease Development at the Ultrastructural Level. Phytopathology 2010, 100, 949–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Chen, C.; Brlansky, R.H.; Gmitter, F.G., Jr.; Li, Z. Changes in Carbohydrate Metabolism in Citrus Sinensis Infected with ‘Candidatus Liberibacter Asiaticus’. Plant Pathol. 2010, 59, 1037–1043. [Google Scholar] [CrossRef]
- Koh, E.; Zhou, L.; Williams, D.S. Callose Deposition in the Phloem Plasmodesmata and Inhibition of Phloem Transport in Citrus Leaves Infected with “Candidatus Liberibacter Asiaticus”. Protoplasma 2012, 249, 687–697. [Google Scholar] [CrossRef]
- Johnson, E.G.; Wu, J.; Bright, D.B.; Graham, J.H. Association of “Candidatus Liberibacter Asiaticus” Root Infection, but Not Phloem Plugging with Root Loss on Huanglongbing-Affected Trees Prior to Appearance of Foliar Symptoms. Plant Pathol. 2014, 63, 290–298. [Google Scholar] [CrossRef]
- Belasque, J.; Bassanezi, R.B.; Yamamoto, P.T.; Ayres, A.J.; Tachibana, A.; Violante, A.R.; Tank, A.; Di Giorgi, F.; Tersi, F.E.A.; Menezes, G.M.; et al. Lessons from Huanglongbing Management in São Paulo State, Brazil. J. Plant Pathol. 2010, 92, 285–302. [Google Scholar] [CrossRef]
- Munir, S.; He, P.; Wu, Y.; He, P.; Khan, S.; Huang, M.; Cui, W.; He, P.; He, Y. Huanglongbing Control: Perhaps the End of the Beginning. Microb. Ecol. 2018, 76, 192–204. [Google Scholar] [CrossRef]
- Viteri, D.M.; Jensen, C.E. De Response of Citrus Spp. Germplasm from Puerto Rico Grafted on Two Rootstocks to Early Infection of Huanglongbing. Eur. J. Plant Pathol. 2021, 160, 589–597. [Google Scholar] [CrossRef]
- Alves, M.N.; Lopes, S.A.; Raiol-junior, L.L.; Wulff, N.A.; Girardi, E.A.; Ollitrault, P.; Peña, L. Resistance to ‘Candidatus Liberibacter Asiaticus,’ the Huanglongbing Associated Bacterium, in Sexually and/or Graft-Compatible Citrus Relatives. Front. Plant Sci. 2021, 11, 617664. [Google Scholar] [CrossRef]
- Albrecht, U.; Bowman, K.D. Tolerance of the Trifoliate Citrus Hybrid US-897 (Citrus Reticulate Blanco × Poncirus Trifoliata L. Raf.) to Huanglongbing. HortScience 2011, 46, 16–22. [Google Scholar] [CrossRef]
- Albrecht, U.; Bowman, K.D. Scientia Horticulturae Tolerance of Trifoliate Citrus Rootstock Hybrids to Candidatus Liberibacter Asiaticus. Sci. Hortic. (Amsterdam). 2012, 147, 71–80. [Google Scholar] [CrossRef]
- Boava, L.P.; Machado, M.A. Physiologic, Anatomic, and Gene Expression Changes in Citrus Sunki, Poncirus Trifoliata, and Their Hybrids After ‘Candidatus Liberibacter Asiaticus’ Infection. Phytopathology 2017, 107, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Curtolo, M.; Pacheco, I.D.S.; Boava, L.P.; Takita, M.A.; Granato, L.M.; Galdeano, D.M.; De Souza, A.A.; Yaly, M.C.; Machado, M.A. Wide-Ranging Transcriptomic Analysis of Poncirus Trifoliata, Citrus Sunki, Citrus Sinensis and Contrasting Hybrids Reveals HLB Tolerance Mechanisms. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Huang, M.; Chen, J. Mechanisms for the Influence of Citrus Rootstocks on Fruit Size. J. Agric. Food Chem. 2015, 63, 2618–2627. [Google Scholar] [CrossRef]
- Bowman, K.D.; Mccollum, G.; Albrecht, U. Scientia Horticulturae Performance of ‘Valencia’ Orange (Citrus Sinensis [L.] Osbeck) on 17 Rootstocks in a Trial Severely Affected by Huanglongbing. Sci. Hortic. 2016, 201, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Boava, L.P.; Sagawa, C.H.D.; Cristofani-Yaly, M.; Machado, M.A. Incidence of Candidatus Liberibacter Asiaticus -Infected Plants Among Citrandarins as Rootstock and Scion Under Field Conditions. Phytopathology 2015, 105, 518–524. [Google Scholar] [CrossRef] [Green Version]
- Hilf, M.E.; Lewis, R.S. Transmission and Propagation of ‘Candidatus Liberibacter Asiaticus’ by Grafting with Individual Citrus Leaves. Phytopathology 2016, 106, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Lopes, S.A.; Luiz, F.Q.B.F.; Oliveira, H.T.; Cifuentes-arenas, J.C.; Raiol-junior, L.L.; Paulista, U.E. Seasonal Variation of ‘Candidatus Liberibacter Asiaticus’ Titers in New Shoots of Citrus in Distinct Environments. Plant Dis. 2017, 101, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Hartung, J.S.; Levy, L. Quantitative Real-Time PCR for Detection and Identification of Candidatus Liberibacter Species Associated with Citrus Huanglongbing. J. Microbiol. Methods 2005, 66, 104–115. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, Y.; Hu, H.; Yuan, Q.; Peng, G.; Xia, Y. Development and Application of Molecular-Based Diagnosis for ‘Candidatus Liberibacter Asiaticus’, the Causal Pathogen of Citrus Huanglongbing. Plant Pathol. 2006, 55, 630–638. [Google Scholar] [CrossRef]
- Do Amaral, L.I.V.; Gaspar, M.; Costa, P.M.F.; Aidar, M.P.M.; Buckeridge, M.S. Novo Método Enzimático Rápido e Sensível de Extração e Dosagem de Amido Em Materiais Vegetais. Hoehnea 2007, 34, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Zavaliev, R.; Epel, B.L. Imaging Callose at Plasmodesmata Using Aniline Blue: Quantitative Confocal Microscopy. In Plasmodesmata; Humana Press: New York, NY, USA, 2015; pp. 105–119. [Google Scholar]
- Granato, L.M.; Galdeano, D.M.; Breton, M.C.; Machado, M.A. Callose Synthase Family Genes Plays an Important Role in the Citrus Defense Response to Candidatus Liberibacter Asiaticus. Eur. J. Plant Pathol. 2019, 155, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Wang, N. Characterization of Copy Numbers of 16S RDNA and 16S RRNA of Candidatus Liberibacter Asiaticus and the Implication in Detection in Planta Using Quantitative PCR. BMC Res. Notes 2009, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Canales, E.; Coll, Y.; Hernández, I.; Portieles, R.; García, M.R.; López, Y.; Aranguren, M.; Alonso, E.; Delgado, R.; Luis, M.; et al. “Candidatus Liberibacter Asiaticus”, Causal Agent of Citrus Huanglongbing, Is Reduced by Treatment with Brassinosteroids. PLoS ONE 2016, 11, e0146223. [Google Scholar] [CrossRef]
- Pitino, M.; Sturgeon, K.; Dorado, C.; Cano, L.M.; Manthey, J.A.; Shatters, R.G.; Rossi, L. Plant Physiology and Biochemistry Quercus Leaf Extracts Display Curative e Ff Ects against Candidatus Liberibacter Asiaticus That Restore Leaf Physiological Parameters in HLB-a Ff Ected Citrus Trees. Plant Physiol. Biochem. 2020, 148, 70–79. [Google Scholar] [CrossRef]
- Bassanezi, R.B.; Primiano, I.V.; Vescove, H. V Effect of Enhanced Nutritional Programs and Exogenous Auxin Spraying on Huanglongbing Severity, Fruit Drop, Yield and Economic Profitability of Orange Orchards. Crop Prot. 2021, 145, 105609. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Meyering, B.; Nuzzo, A.; Strauss, S.L.; Albrecht, U. Effect of Plant Biostimulants on Root and Plant Health and the Rhizosphere Microbiome of Citrus Trees in Huanglongbing-Endemic Conditions. Trees 2021, 35, 1525–1539. [Google Scholar] [CrossRef]
- Folimonova, S.Y.; Robertson, C.J.; Garnsey, S.M.; Gowda, S.; Dawson, W.O. Examination of the Responses of Different Genotypes of Citrus to Huanglongbing ( Citrus Greening ) Under Different Conditions. Phytopathology 2009, 99, 1346–1354. [Google Scholar] [CrossRef] [Green Version]
- Stover E and McCollum G Incidence and Severity of Huanglongbing and Candidatus Liberibacter Asiaticus Titer among Field-Infected Citrus Cutivars. HortScience 2011, 46, 1344–1348. [CrossRef]
- Boscariol-camargo, R.L.; Cristofani-yaly, M.; Malosso, A.; Della Coletta-filho, H.; Machado, M.A. Avaliação de Diferentes Genótipos de Citros à Infecção Por Candidatus Liberibacter Asiaticus. Citrus Res. Technol. 2017, 31, 85–90. [Google Scholar] [CrossRef]
- Ramadugu, C.; Keremane, M.L.; Halbert, S.E.; Duan, Y.P.; Roose, M.L.; Stover, E.; Lee, R.F. Long-Term Field Evaluation Reveals Huanglongbing Resistance in Citrus Relatives. Plant Dis. 2016, 100, 1858–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, U.; Bowman, K.D. Plant Science Transcriptional Response of Susceptible and Tolerant Citrus to Infection with Candidatus Liberibacter Asiaticus. Plant Sci. 2012, 185–186, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Raiol-junior, L.L.; Cifuentes-arenas, J.C.; De Carvalho, E.V.; Girardi, E.A.; Lopes, S.A. Evidence That ‘Candidatus Liberibacter Asiaticus’ Moves Predominantly Toward New Tissue Growth in Citrus Plants. Plant Dis. 2021, 105, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Tatineni, S.; Sagaram, U.S.; Gowda, S.; Robertson, C.J.; Dawson, W.O.; Iwanami, T.; Wang, N. In Planta Distribution of “Candidatus Liberibacter Asiaticus” as Revealed by Polymerase Chain Reaction (PCR) and Real-Time PCR. Phytopathology 2008, 98, 592–599. [Google Scholar] [CrossRef] [Green Version]
- Rasool, A.; Mansoor, S.; Bhat, K.M.; Hassan, G.I.; Baba, T.R.; Alyemeni, M.N.; Alsahli, A.A.; El-serehy, H.A. Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. Front. Plant Sci. 2020, 11, 590847. [Google Scholar] [CrossRef]
- Fadel, A.L.; Stuchi, E.S.; Alves de Carvalho, S.; Federici, M.T.; Della Coletta-Filho, H. Navelina ISA 315: A Cultivar Resistant to Citrus Variegated Chlorosis. Crop Prot. 2014, 64, 115–121. [Google Scholar] [CrossRef]
- Etxeberria, E.; Gonzalez, P.; Achor, D.; Albrigo, G. Physiological and Molecular Plant Pathology Anatomical Distribution of Abnormally High Levels of Starch in HLB-Affected Valencia Orange Trees. Physiol. Mol. Plant Pathol. 2009, 74, 76–83. [Google Scholar] [CrossRef]
- Yasser Nehela, N.K. Revisiting the Complex Pathosystem of Huanglongbing : Deciphering the Role of Citrus Metabolites in Symptom Development. Metabolites 2020, 10, 409. [Google Scholar] [CrossRef]
- Rubin, R.L.; van Groenigen, K.J.; Hungate, B.A. Plant Growth Promoting Rhizobacteria Are More Effective under Drought: A Meta-Analysis. Plant Soil 2017, 416, 309–323. [Google Scholar] [CrossRef]
- Welker, S.; Pierre, M.; Santiago, J.P.; Dutt, M.; Vincent, C.; Levy, A. Phloem Transport Limitation in Huanglongbing-Affected Sweet Orange Is Dependent on Phloem-Limited Bacteria and Callose. Tree Physiol. 2022, 42, 379–390. [Google Scholar] [CrossRef]
- Rathore, A.S.; Gupta, R.D. Chitinases from Bacteria to Human: Properties, Applications, and Future Perspectives. Enzym. Res. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Bredeson, J.V.; Wu, G.A.; Shu, S.; Rawat, N.; Du, D.; Parajuli, S. A Chromosome-Scale Reference Genome of Trifoliate Orange (Poncirus Trifoliata) Provides Insights into Disease Resistance, Cold Tolerance and Genome Evolution in Citrus. Plant J. 2020, 104, 1215–1232. [Google Scholar] [CrossRef]
- Huang, M.; Roose, M.L.; Yu, Q.; Du, D.; Yu, Y.; Zhang, Y.; Deng, Z.; Stover, E.; Gmitter, F.G. Construction of High-Density Genetic Maps and Detection of QTLs Associated with Huanglongbing Tolerance in Citrus. Front. Plant Sci. 2018, 9, 1694. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-Y.; Araujo, K.; Sánchez, J.N.; Kund, G.; Trumble, J.; Roper, C.; Godfrey, K.E.; Jin, H. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. Proc. Natl. Acad. Sci. USA 2021, 118, e2019628118. [Google Scholar] [CrossRef]
Valencia HLB-Diseased Plants (VP) | Grafted Genotypes 1 | Days After Top-Grafting 2 | |||
---|---|---|---|---|---|
90 | 180 | 270 | 360 | ||
VP02 | 126, 158, 181, 303, 106 | 24.98 Bb | 22.72 Bc | 24.65 Ab | 26.95 Aa |
VP05 | 109, 199, 222, 254, 303 | 27.70 Aa | 22.10 Bc | 23.87 Bb | 24.53 Ab |
VP11 | 158, 282, Pt, 75, 303 | 21.00 Cb | 21.41 Cb | 20.82 Cb | 23.06 Ba |
VP14 | 75, 109, 126, 222, 282, Pt | 24.16 Ba | 24.84 Aa | 25.37 Aa | 25.40 Aa |
VP16 | 158, 283, Pt, 303, 75 | 22.08 Cb | 22.63 Bb | 25.54 Aa | 26.01 Aa |
VP19 | 181, 222, 303,109, 181 | 22.93 Ca | 23.89 Aa | 22.98 Ba | 21.08 Bb |
VP20 | 199, 254, 283, 106, Sk | 22.51 Ca | 19.41 Cb | 21.54 Ca | 21.81 Ba |
VP21 | 106, 199, 282, 68, Sk | 21.31 Ca | 20.82 Ca | 19.33 Cb | 21.74 Ba |
VP22 | 68, 106, 222, 109, 158 | 21.57 Ca | 22.35 Ba | 21.81 Ca | 21.23Ba |
VP23 | 68, 109, 303, Sk, Pt | 23.11 Ca | 21.24 Cb | 20.66 Cb | 23.00 Ba |
VP24 | 126, 157, 254, 283, Sk | 21.70 Ca | 20.42 Ca | 20.66 Ca | 21.59 Ba |
VP25 | 68, 75, 157, 254, 283, Pt | 19.44 Da | 20.29 Ca | 20.71Ca | 19.89 Ba |
VP26 | 106, 157, 222, 254, 283, Sk | 18.98 Dc | 20.81 Cb | 23.54 Ba | 21.48 Bb |
VP27 | 68, 106, 282, 283, 109 | 20.58 Da | 21.21 Ca | 22.75 Ba | 21.68 Ba |
Median/CLas titer 3 | 21.89 4.91 × 105 | 21.32 7.41 × 105 | 22.28 3.70 × 105 | 21.77 5.35 × 105 |
Genotypes | Days After Top-Grafting 1 | |||
---|---|---|---|---|
90 | 180 | 270 | 360 | |
Hybrids | ||||
H68 | 4/5 2 b | 2/5 c | 4/5 b | 3/5 c |
H75 | 1/4 c | 2/4 c | 2/4 b | 2/4 c |
H106 | 3/4 b | 3/4 b | 3/4 b | 0/4 d |
H109 | 5/6 b | 2/6 c | 1/6 c | 2/6 c |
H126 | 2/3 b | 2/3 b | 2/3 b | 1/3 c |
H157 | 3/3 a | 1/3 c | 1/3 c | 1/3 c |
H158 | 4/4 a | 4/4 a | 4/4 a | 4/4 a |
H181 | 2/3 b | 2/3 b | 2/3 b | 2/3 c |
H199 | 3/3 a | 3/3 a | 3/3 a | 3/3 a |
H222 | 5/5 a | 3/5 b | 3/5 b | 1/5 c |
H254 | 5/5 a | 4/5 b | 3/5 b | 4/5 b |
H282 | 4/4 a | 4/4 a | 4/4 a | 4/4 a |
H283 | 5/6 b | 4/6 b | 4/6 b | 4/5 b |
H303 | 4/6 b | 4/6 b | 3/6 b | 3/4 b |
Parents | ||||
Sunki mandarin | 5/5 a | 5/5 a | 5/5 a | 5/5 a |
P. trifoliata cv Rubidoux | 3/6 c | 2/6 c | 2/5 b | 2/5 c |
Genotypes | Days After Top-Grafting (DATg) 1 | CLas Titer at 360 DATg 2 | |||
---|---|---|---|---|---|
90 | 180 | 270 | 360 | ||
Hybrids | |||||
H68 | 28.92 a | 25.55 a | 23.66 a | 23.37 b | 1.68 × 105 |
H75 | 19.72 c | 23.28 a | 20.76 a | 28.65 a | 3.69 × 103 |
H106 | 29.40 a | 25.02 a | 26.05 a | 40.00 3 | no-detected cells |
H109 | 25.96 a | 26.62 a | 25.42 a | 27.28 a | 9.95 × 103 |
H126 | 25.39 a | 25.15 a | 30.13 a | 25.74 a | 3.03 × 104 |
H157 | 27.71 a | 23.64 a | 24.18 a | 23.10 b | 2.05 × 105 |
H158 | 23.45 b | 24.40 a | 25.81 a | 27.59 a | 7.94 × 103 |
H181 | 26.63 a | 26.68 a | 28.25 a | 29.05 a | 2.76 × 103 |
H199 | 24.77 b | 23.70 a | 21.17 a | 22.95 b | 2.28 × 105 |
H222 | 27.15 a | 25.98 a | 24.31 a | 24.93 b | 5.44 × 104 |
H254 | 28.00 a | 27.28 a | 28.09 a | 27.28 a | 9.94 × 103 |
H282 | 25.58 a | 24.46 a | 22.46 a | 23.31 b | 1.76 × 105 |
H283 | 23.02 b | 23.93 a | 21.47 a | 21.14 b | 8.84 × 105 |
H303 | 27.29 a | 26.95 a | 22.66 a | 27.68 a | 7.44 × 103 |
Parents | |||||
Sunki mandarin | 27.50 a | 25.50 a | 24.02 a | 23.93 b | 1.12 × 105 |
P. trifoliata cv Rubidoux | 28.93 a | 25.69 a | 26.31 a | 29.99 a | 1.40 × 103 |
CV (%) | 11.67 | 11.39 | 11.97 | 10.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavichioli, T.M.; Curtolo, M.; Cristofani-Yaly, M.; Rodrigues, J.; Coletta-Filho, H.D. Temporal Analysis of Candidatus Liberibacter asiaticus in Citrandarin Genotypes Indicates Unstable Infection. Agronomy 2022, 12, 2566. https://doi.org/10.3390/agronomy12102566
Cavichioli TM, Curtolo M, Cristofani-Yaly M, Rodrigues J, Coletta-Filho HD. Temporal Analysis of Candidatus Liberibacter asiaticus in Citrandarin Genotypes Indicates Unstable Infection. Agronomy. 2022; 12(10):2566. https://doi.org/10.3390/agronomy12102566
Chicago/Turabian StyleCavichioli, Thais Magni, Maiara Curtolo, Mariangela Cristofani-Yaly, Josiane Rodrigues, and Helvécio Della Coletta-Filho. 2022. "Temporal Analysis of Candidatus Liberibacter asiaticus in Citrandarin Genotypes Indicates Unstable Infection" Agronomy 12, no. 10: 2566. https://doi.org/10.3390/agronomy12102566