Effects of Salinity Accumulation on Physical, Chemical, and Microbial Properties of Soil under Rural Domestic Sewage Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Test
2.2. Experimental Design
2.3. Physicochemical Analyses
2.4. Microbial Analyses
2.5. Statistical Analysis
3. Results and Analysis
3.1. Soil Salt Accumulation and Soil Fertility Status
3.2. Changes in Major Salt-Based Ions in Surface, 40 cm, and 80 cm Soils
3.3. Soil Microbial Environment Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rengasamy, P. World Salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef]
- Rina, K.; Datta, P.S.; Singh, C.K.; Mukherjee, S. Isotopes and ion chemistry to identify salinization of coastal aquifers of Sabarmati River Basin. Curr. Sci. 2013, 104, 335–344. [Google Scholar]
- Li, J.; Pu, L.; Han, M.; Zhu, M.; Zhang, R.; Xiang, Y. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Shi, X.; Wang, H.; Song, J.; Lv, X.; Li, W.; Li, B.; Shi, J. Impact of saline soil improvement measures on salt content in the abandonment-reclamation process. Soil Tillage Res. 2021, 208, 104867. [Google Scholar] [CrossRef]
- Lu, S.B.; Shang, Y.Z.; Pei, L.; Li, W.; Wu, X.H. The effects of rural domestic sewage reclaimed water drip irrigation on characteristics of rhizosphere soil. Appl. Ecol. Environ. Res. 2017, 15, 1145–1155. [Google Scholar] [CrossRef]
- Zalacáin, D.; Martínez-Pérez, S.; Bienes, R.; García-Díaz, A.; Sastre-Merlín, A. Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain). Agric. Water Manag. 2019, 213, 468–476. [Google Scholar] [CrossRef]
- Srivastava, S.K. Assessment of groundwater quality for the suitability of irrigation and its impacts on crop yields in the Guna District, India. Agric. Water Manag. 2019, 216, 224–241. [Google Scholar] [CrossRef]
- Mu, Y.G.; Lin, J.X.; Mu, C.S.; Gao, Z.W. Effects of NaCl stress on the growth and physiological changes in oat (Avena sativa) seedlings. Notulae Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 468–472. [Google Scholar] [CrossRef]
- Qian, Y.L.; Mecham, B. Long-term effects of recycled wastewater irrigation on soil chemical properties on golf course fairways. Agron. J. 2005, 97, 717–721. [Google Scholar] [CrossRef]
- Liu, J.; Guo, W.Q.; Shi, D.C. Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions. Photosynthetica 2010, 48, 278–286. [Google Scholar] [CrossRef]
- Rath, K.M.; Rousk, J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biol. Biochem. 2015, 81, 108–123. [Google Scholar] [CrossRef]
- Min, W.; Guo, H.; Zhang, W.; Zhou, G.; Ma, L.; Ye, J.; Liang, Y.; Hou, Z. Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2016, 66, 117–126. [Google Scholar] [CrossRef]
- Wang, B.; Kuang, S.; Shao, H.; Cheng, F.; Wang, H. Improving soil fertility by driving microbial community changes in saline soils of Yellow River Delta under petroleum pollution. J. Environ. Manag. 2022, 304, 114265. [Google Scholar] [CrossRef]
- Cui, X.; Hu, J.; Wang, J.; Yang, J.; Lin, X. Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by illumina sequencing. Appl. Soil Ecol. 2016, 98, 140–149. [Google Scholar] [CrossRef]
- Li, Z.; Hu, K.; Zhang, X.; Gong, L.; Jiang, Z.; Xing, Y.; Ding, J.; Tian, J.; Huang, J. Distributed treatment of rural environmental wastewater by artificial ecological geographic information system. J. King Saud Univ. Sci. 2022, 34, 101806. [Google Scholar] [CrossRef]
- Van Den Brand, T.P.; Roest, K.; Chen, G.H.; Brdjanovic, D.; Van Loosdrecht, M.C.M. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World J. Microbiol. Biotechnol. 2015, 31, 1675–1681. [Google Scholar] [CrossRef]
- GB 5084-2021; Standard for Irrigation Water Quality. Standards Press of China: Beijing, China, 2021.
- Kim, H.K.; Jang, T.I.; Kim, S.M.; Park, S.W. Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables. Environ. Earth Sci. 2015, 73, 2377–2383. [Google Scholar] [CrossRef]
- HJ 632-2011; Soil-Determination of Total Phosphorus by Alkali Fusion–Mo-Sb Anti Spectrophotometric Method. Standards Press of China: Beijing, China, 2011.
- Zhang, K.; Shi, Y.; Lu, H.; He, M.; Huang, W.; Siemann, E. Soil bacterial communities and co-occurrence changes associated with multi-nutrient cycling under rice-wheat rotation reclamation in coastal wetland. Ecol. Indic. 2022, 144, 109485. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Ren, Q.; Zhu, L.; Lin, J.; Zhang, J.; Cheng, X.; Ma, J.; Yue, J. Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) makino seedlings under salt stress. Forests 2019, 10, 186. [Google Scholar] [CrossRef]
- NY/T 85-1988; Method for the Determination of Organic Matter. Standards Press of China: Beijing, China, 1988.
- LY/T 1251-1999; Method for Analysis of Water Soluble Salts in Forest Soils. Standards Press of China: Beijing, China, 1999.
- NY/T 1121.23-2010; Method for the Determination of Soil Particle Density. Standards Press of China: Beijing, China, 2010.
- Bessaim, M.M.; Missoum, H.; Bendani, K.; Laredj, N.; Bekkouche, M.S. Effect of processing time on removal of harmful emerging salt pollutants from saline-sodic soil during electrochemical remediation. Chemosphere 2020, 253, 126688. [Google Scholar] [CrossRef]
- Kudakwashe, M.; Qiang, L.I.U.; Shuai, W.U.; Yanfei, Y. Plant-and microbe-assisted biochar amendment technology for petroleum hydrocarbon remediation in saline-sodic soils: A review. Pedosphere 2022, 32, 211–221. [Google Scholar] [CrossRef]
- Peng, S.; Ge, Z.; Liu, G.; Mao, L. Environmental drivers of soil microbial activity and diversity along an elevational gradient. J. Mt. Sci. 2022, 19, 1336–1347. [Google Scholar] [CrossRef]
Soil Particle Composition | Soil Properties | |||||
---|---|---|---|---|---|---|
Soil Depth | Grit/% (0.2~2 mm) | Fine Sand/% (0.02~0.2 mm) | Silt/% (0.002~0.02 mm) | Clay Particle/% (<0.002 mm) | Saturated Moisture Content/% | Soil Bulk Density/g·cm−3 |
0~20 | 3.6 | 35.9 | 34.4 | 26.1 | 30.17~32.24 | 23.1~32.07 |
20~40 | 32.47~33.67 | 24.9~33.02 | ||||
40~60 | 33.09~35.13 | 25.32~35.91 | ||||
60~80 | 33.58~38.61 | 27.82~37.84 |
Test Sample | TN | TP | OM | NH4+-N | NO3−-N | Ca2+ | Mg2+ | Na+ | Cl− | SO42− |
---|---|---|---|---|---|---|---|---|---|---|
Soil sample/mg·kg−1 | 0.84 | 0.62 | 20.93 | 0.022 | 0.68 | 6.45 | 2.09 | 6.65 | 3.36 | 2.89 |
Water sample/mg·L−1 | 22.62 | 1.89 | - | 18.48 | 2.71 | 120.88 | 40.48 | 121.25 | 54.6 | 75 |
Depth (cm) | Total Salt | TN | TP | OM | |
---|---|---|---|---|---|
0 | Total salt | 1 | −0.63 ** | −0.39 | −0.80 ** |
TN | 1 | 0.58 ** | 0.35 | ||
TP | 1 | 0.37 | |||
OM | 1 | ||||
40 | Total salt | 1 | −0.80 ** | −0.80 ** | −0.85 ** |
TN | 1 | 1 ** | 0.88 ** | ||
TP | 1 | 0.87 ** | |||
OM | 1 | ||||
80 | Total salt | 1 | −0.817 ** | −0.041 | −0.964 ** |
TN | 1 | −0.305 | 0.873 ** | ||
TP | 1 | 0.033 | |||
OM | 1 |
Bacteriodominant Bacteria | Fungal Dominance Bacteria | |||||
---|---|---|---|---|---|---|
Soil layer | Surface layer | 40 cm | 80 cm | Surface layer | 40 cm | 80 cm |
Influence ion | Mg2+, Cl− | Mg2+, Ca2+ | Cl−, SO42− |
Cellular Processes | Environmental Information Processing | Genetic Information Processing | Human Diseases | Metabolism | Organismal Systems | Unclassified | |
---|---|---|---|---|---|---|---|
CK0 | 1,391,270 | 5,006,581 | 5,754,990 | 290,127 | 19,079,370 | 292,706 | 4,606,705 |
CK40 | 1,340,220 | 4,827,094 | 5,554,030 | 272,867 | 18,328,160 | 278,957 | 4,431,096 |
CK80 | 1,369,520 | 4,623,373 | 5,662,434 | 280,745 | 18,673,016 | 285,723 | 4,509,798 |
RW0 | 1,385,445 | 4,986,383 | 5,686,718 | 296,638 | 18,982,803 | 292,936 | 4,573,362 |
RW40 | 1,386,267 | 5,098,672 | 5,780,204 | 283,987 | 19,301,018 | 294,968 | 4,611,424 |
RW80 | 1,367,160 | 4,833,606 | 5,612,101 | 277,072 | 18,508,842 | 282,947 | 4,460,730 |
W10 | 1,396,217 | 5,034,973 | 5,724,850 | 303,135 | 19,059,202 | 292,647 | 4,624,886 |
W140 | 1,360,274 | 5,016,912 | 5,768,770 | 286,594 | 18,685,132 | 279,505 | 4,649,175 |
W180 | 1,372,578 | 4,904,324 | 5,738,065 | 280,231 | 18,824,906 | 285,000 | 4,548,505 |
W20 | 1,399,375 | 4,877,123 | 5,751,892 | 297,077 | 18,763,323 | 287,237 | 4,610,208 |
W240 | 1,394,558 | 4,879,426 | 5,736,009 | 282,224 | 18,726,545 | 284,815 | 4,541,129 |
W280 | 1,371,227 | 5,090,576 | 5,719,080 | 281,393 | 19,203,817 | 296,846 | 4,557,991 |
W30 | 1,388,706 | 4,970,516 | 5,773,085 | 289,402 | 18,906,468 | 286,027 | 4,592,289 |
W340 | 1,367,168 | 4,947,549 | 5,685,237 | 279,732 | 18,742,700 | 284,963 | 4,521,507 |
W380 | 1,388,957 | 5,036,150 | 5,777,576 | 279,834 | 19,097,158 | 289,926 | 4,573,274 |
W40 | 1,378,053 | 5,125,373 | 5,885,250 | 289,365 | 19,465,571 | 295,305 | 4,674,622 |
W440 | 1,391,058 | 5,017,000 | 5,780,449 | 279,857 | 19,132,885 | 290,944 | 4,575,153 |
W480 | 1,384,923 | 5,021,269 | 5,743,019 | 281,792 | 18,983,140 | 287,673 | 4,584,119 |
W50 | 1,363,880 | 5,000,114 | 5,754,629 | 291,827 | 19,108,757 | 294,398 | 4,598,483 |
W540 | 1,358,700 | 5,156,995 | 5,740,063 | 281,163 | 19,441,270 | 301,990 | 4,556,737 |
W580 | 1,403,623 | 5,323,602 | 5,786,163 | 290,088 | 19,321,747 | 294,177 | 4,628,459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhang, D.; Kong, H.; Zhang, G.; Shen, F.; Huang, Z. Effects of Salinity Accumulation on Physical, Chemical, and Microbial Properties of Soil under Rural Domestic Sewage Irrigation. Agronomy 2024, 14, 514. https://doi.org/10.3390/agronomy14030514
Wang W, Zhang D, Kong H, Zhang G, Shen F, Huang Z. Effects of Salinity Accumulation on Physical, Chemical, and Microbial Properties of Soil under Rural Domestic Sewage Irrigation. Agronomy. 2024; 14(3):514. https://doi.org/10.3390/agronomy14030514
Chicago/Turabian StyleWang, Weihan, Dandan Zhang, Hao Kong, Gengtao Zhang, Feng Shen, and Zhiping Huang. 2024. "Effects of Salinity Accumulation on Physical, Chemical, and Microbial Properties of Soil under Rural Domestic Sewage Irrigation" Agronomy 14, no. 3: 514. https://doi.org/10.3390/agronomy14030514
APA StyleWang, W., Zhang, D., Kong, H., Zhang, G., Shen, F., & Huang, Z. (2024). Effects of Salinity Accumulation on Physical, Chemical, and Microbial Properties of Soil under Rural Domestic Sewage Irrigation. Agronomy, 14(3), 514. https://doi.org/10.3390/agronomy14030514