Phenological Assessment of Hops (Humulus lupulus L.) Grown in Semi-Arid and Subtropical Climates Through BBCH Scale and a Thermal-Based Growth Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Crop Management
2.2. Data Collection
2.3. Growth Stage Identification and Evaluation
2.4. Statistical Analysis
3. Results
3.1. NonLinear Regression Models for Hop Development and Growth Analysis
3.2. Evaluating Predictions: Linear Regressions and Confusion Matrices
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mauney, J.R. Vegetative growth and development of fruiting sites. Cotton Physiol. 1986, 1, 16–18. [Google Scholar]
- Romberger, J.A.; Hejnowicz, Z.; Hill, J.F. Plant Structure: Function and Development. A Treatise on Anatomy and Vegetative Development with Special Reference to Woody Plants; Blackburn Press: Austell, GA, USA, 1993. [Google Scholar]
- Martienssen, R.; Dolan, L.; Anderson, M.; Roberts, J. Patterns in vegetative development. Arabidopsis. Annu. Rev. Plant Biol. 1998, 1, 262–297. [Google Scholar]
- Von Bertalanffy, L. A quantitative theory of organic growth (inquiries on growth laws. II). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Egli, D.B. Time and the productivity of agronomic crops and cropping systems. Agron. J. 2011, 103, 743–750. [Google Scholar] [CrossRef]
- Bruns, H.A. A survey of factors involved in crop maturity. Agron. J. 2009, 101, 60–66. [Google Scholar] [CrossRef]
- Gratani, L. Plant phenotypic plasticity in response to environmental factors. Adv. Bot. 2014, 2014, 208747. [Google Scholar] [CrossRef]
- Zafar, S.; Shah, A.A.; Ashraf, M.A.; Rasheed, R.; Muddasar, M.; Khan, I.M.; Iqbal, R. Plant Growth Under Extreme Climatic Conditions. In Environment, Climate, Plant and Vegetation Growth; Springer Nature: Cham, Switzerland, 2024; pp. 133–178. [Google Scholar]
- Kadam, N.N.; Xiao, G.; Melgar, R.J.; Bahuguna, R.N.; Quinones, C.; Tamilselvan, A.; Jagadish, K.S. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv. Agron. 2014, 127, 111–156. [Google Scholar]
- Went, F.W. Plant growth under controlled conditions. II. Thermoperiodicity in growth and fruiting of the tomato. Am. J. Bot. 1944, 31, 135–150. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.S.M.A.; Fujita, D.B.S.M.A.; Basra, S.M. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Pugnaire, F.I.; Serrano, L.; Pardos, J. Constraints by water stress on plant growth. In Handbook of Plant and Crop Stress; Marcel Dekker, Inc.: New York, NY, USA, 1999; Volume 2, Chapter 11; pp. 271–283. [Google Scholar]
- Ayala, S.; Rao, E.P. Perspectives of soil fertility management with a focus on fertilizer use for crop productivity. Curr. Sci. 2002, 82, 797–807. [Google Scholar]
- Blandino, M.; Battisti, M.; Vanara, F.; Reyneri, A. The synergistic effect of nitrogen and phosphorus starter fertilization sub-surface banded at sowing on the early vigor, grain yield and quality of maize. Eur. J. Agron. 2022, 137, 126509. [Google Scholar] [CrossRef]
- Grossman, J.J. Phenological physiology: Seasonal patterns of plant stress tolerance in a changing climate. New Phytol. 2023, 237, 1508–1524. [Google Scholar] [CrossRef] [PubMed]
- Aitken, Y. Flowering Time, Climate and Genotype: The Adaptation of Agricultural Species to Climate through Flowering Responses; Melbourne University Press: Carlton, Australia, 1974. [Google Scholar]
- Ong, C.K. Agroclimatological Factors Affecting Phenology of Groundnut. Available online: http://oar.icrisat.org/id/eprint/4242 (accessed on 29 December 2023).
- Haunold, A. Hop production, breeding, and variety development in various countries. J. Am. Soc. Brew. Chem. 1981, 39, 27–34. [Google Scholar] [CrossRef]
- Carrubba, A.; Marceddu, R.; Sarno, M. Hop (Humulus lupulus L.): Suitability of traditional cultivars to a low-trellis farming system in a semiarid environment. HortScience 2022, 57, 1409–1415. [Google Scholar] [CrossRef]
- Marceddu, R.; Carrubba, A.; Alfeo, V.; Alessi, A.; Sarno, M. Adapting American hop (Humulus lupulus L.) varieties to Mediterranean sustainable agriculture: A trellis height exploration. Horticulturae 2024, 10, 181. [Google Scholar] [CrossRef]
- Gresta, F.; Calvi, A.; Santonoceto, C.; Strano, T.; Ruberto, G. Agronomic traits and essential oil profiles of Humulus lupulus L. cultivated in southern Italy. Eur. J. Oper. Res. 2023, 35, 60–70. [Google Scholar] [CrossRef]
- Rossini, F.; Virga, G.; Loreti, P.; Iacuzzi, N.; Ruggeri, R.; Provenzano, M.E. Hops (Humulus lupulus L.) as a novel multipurpose crop for the Mediterranean region of Europe: Challenges and opportunities of their cultivation. Agriculture 2021, 11, 484. [Google Scholar] [CrossRef]
- Ruggeri, R.; Loreti, P.; Rossini, F. Exploring the potential of hop as a dual purpose crop in the Mediterranean environment: Shoot and cone yield from nine commercial cultivars. Eur. J. Agron. 2018, 93, 11–17. [Google Scholar] [CrossRef]
- Jastrombek, J.M.; Faguerazzi, M.M.; de Cássio Pierezan, H.; Rufato, L.; Sato, A.J.; da Silva Ricce, W.; Marques, V.V.; Leles, N.R.; Roberto, S.R. Hop: An emerging crop in subtropical areas in Brazil. Horticulturae 2022, 8, 393. [Google Scholar] [CrossRef]
- Leles, N.R.; Sato, A.J.; Rufato, L.; Jastrombek, J.M.; Marques, V.V.; Missio, R.F.; Roberto, S.R. Performance of hop cultivars grown with artificial lighting under subtropical conditions. Plants 2023, 12, 1971. [Google Scholar] [CrossRef]
- Acosta-Rangel, A.; Rechcigl, J.; Bollin, S.; Deng, Z.; Agehara, S. Hop (Humulus lupulus L.) phenology, growth, and yield under subtropical climatic conditions: Effects of cultivars and crop management. Aust. J. Crop Sci. 2021, 15, 764–772. [Google Scholar] [CrossRef]
- Acosta-Rangel, A.; Agehara, S.; Rechcigl, J. Double-season production of hops (Humulus lupulus L.) with photoperiod manipulation in a subtropical climate. Sci. Hortic. 2024, 332, 113177. [Google Scholar] [CrossRef]
- Dambreville, A.; Lauri, P.E.; Normand, F.; Guédon, Y. Analysing growth and development of plants jointly using developmental growth stages. Ann. Bot. 2015, 115, 93–105. [Google Scholar] [CrossRef]
- Goudriaan, J.; Van Laar, H.H. Modelling Potential Crop Growth Processes: Textbook with Exercises, 2nd ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Bonhomme, R. Bases and limits to using ‘degree day’ units. Eur. J. Agron. 2000, 13, 1–10. [Google Scholar] [CrossRef]
- Gatsuk, L.E.; Smirnova, O.V.; Vorontzova, L.I.; Zaugolnova, L.B.; Zhukova, L.A. Age states of plants of various growth forms: A review. J. Ecol. 1980, 68, 675–696. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; van den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants–history and publications. Nachr. Dtsch. Pflanzenschutzd. 2009, 61, 41–52. [Google Scholar]
- Rossbauer, G.; Buhr, L.; Hack, H.; Hauptmann, S.; Klose, R.; Meier, U.; Stauss, R.; Weber, E. Phanologische Entwicklungsstadien von Kultur-Hopfen (Humulus lupulus L.). Nachr. Dtsch. Pflanzenschutzd. 1995, 47, 249–253. [Google Scholar]
- De Wit, M.; Galvao, V.C.; Fankhauser, C. Light-mediated hormonal regulation of plant growth and development. Annu. Rev. Plant Biol. 2016, 67, 513–537. [Google Scholar] [CrossRef]
- Lastdrager, J.; Hanson, J.; Smeekens, S. Sugar signals and the control of plant growth and development. J. Exp. Bot. 2014, 65, 799–807. [Google Scholar] [CrossRef] [PubMed]
- SIAS Servizio Informativo Agrometeorologico Siciliano. Available online: http://www.sias.regione.sicilia.it (accessed on 29 December 2023).
- FAWN. Florida Automated Weather Network. University of Florida IFAS Extension. Available online: https://fawn.ifas.ufl.edu/ (accessed on 29 December 2023).
- Agehara, S.; Acosta-Rangel, A.; Deng, Z.; Rechcigl, J.; Bollin, S. Hop yard establishment and trellis construction in Florida: HS1354 2/2020. EDIS 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Agehara, S. Using supplemental lighting to control flowering of hops in Florida: HS1365 4/2020. EDIS 2020, 2020, 1–4. [Google Scholar]
- Marceddu, R.; Carrubba, A.; Sarno, M. Cultivation trials of hop (Humulus lupulus L) in a Mediterranean environment. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Innovative Perennial Crops Management, Angers, France, 14–20 August 2022. [Google Scholar]
- Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 2017, 198, 369–383. [Google Scholar] [CrossRef]
- Eladl, S.G.; Haikal, A.Y.; Saafan, M.M.; Zain Eldin, H.Y. A proposed plant classification framework for smart agricultural applications using UAV images and artificial intelligence techniques. Alex. Eng. J. 2024, 109, 466–481. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Yalcin, H. Phenology monitoring of agricultural plants using texture analysis. In Proceedings of the IEEE 2015 Fourth International Conference on Agro-Geoinformatics, Istanbul, Turkey, 20–24 July 2015; pp. 338–342. [Google Scholar]
- Archontoulis, S.V.; Miguez, F.E. Nonlinear regression models and applications in agricultural research. Agron. J. 2015, 107, 786–798. [Google Scholar] [CrossRef]
- Paine, C.T.; Marthews, T.R.; Vogt, D.R.; Purves, D.; Rees, M.; Hector, A.; Turnbull, L.A. How to fit nonlinear plant growth models and calculate growth rates: An update for ecologists. Methods Ecol. Evol. 2012, 3, 245–256. [Google Scholar] [CrossRef]
- Akaike, H. Akaike’s information criterion. Int. Encycl. Stat. Sci. 2011, 25. [Google Scholar] [CrossRef]
- Yoshimatsu, K.; Iida, O.; Kitazawa, T.; Sekine, T.; Kojoma, M.; Makino, Y.; Kiuchi, F. Growth characteristics of Cannabis sativa L. cultivated in a phytotron and in the field. Bull. Nat. Inst. Health Sci. 2004, 122, 16–20. [Google Scholar]
- Morello, V.; Brousseau, V.D.; Wu, N.; Wu, B.S.; MacPherson, S.; Lefsrud, M. Light quality impacts vertical growth rate, phytochemical yield, and cannabinoid production efficiency in Cannabis sativa. Plants 2022, 11, 2982. [Google Scholar] [CrossRef]
- Gachoki, P.; Muraya, M.; Njoroge, G. Modelling plant growth based on Gompertz, logistic curve, extreme gradient boosting and light gradient boosting models using high-dimensional image-derived maize (Zea mays L.) phenomic data. Am. J. Appl. Math. Stat. 2022, 10, 52–64. [Google Scholar] [CrossRef]
- Tjørve, K.M.; Tjørve, E. The use of Gompertz models in growth analyses, and a new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE 2017, 12, e0178691. [Google Scholar] [CrossRef]
- Wardhani, W.S.; Kusumastuti, P. Describing the height growth of corn using logistic and Gompertz models. Agrivita J. Agric. Sci. 2014, 35, 237–241. [Google Scholar] [CrossRef]
Location | Growth Stages | HGR Values Range (mm GDDs−1) |
---|---|---|
Mediterranean environment | I | 0.59→2.57 |
II | 3.09→5.96 | |
III | 4.03→1.19 | |
IV | 0.93→0.00 | |
Subtropical environment | I | 0.00→1.96 |
II | 2.99→11.2 | |
III | 8.36→5.50 | |
IV | 2.88→0.00 |
Variables | Model | Formula | AICs Values | |
---|---|---|---|---|
Equation | Height vs. Time | SA | ST | |
6a | Sigmoidal function | y = yasym/{1 + exp[–(t − t0)/b]} | 1294.2 | 1365.1 |
6b | Modified sigmoidal function | y = y0 + yasym/{1 + exp[–(t − t0)/b]} | 1293.7 | 1371.7 |
6c | Logistic function | y = yasym/[1 + (t/t0)b] | 1295.5 | 1363.5 |
6d | Modified logistic function | y = y0 + yasym/[1 + (t/t0)b] | 1303.3 | 1365.5 |
6e | Gompertz | y = yasym exp{−exp[–(t − t0)/b]} | 1293.6 | 1363.3 |
6f | Modified Gompertz | y = y0 + yasym exp{–exp[–(t − t0)/b]} | 1294.8 | 1364.9 |
HGR vs. Time | ||||
6g | Gaussian function | y = yasym exp{–0.5[(t − t0)/b]2} | 150.7 | 308.3 |
6h | Modified Gaussian function | y = y0 + yasym exp{–0.5[(t − t0)/b]2} | 148.9 | 269.0 |
6i | Modified Gaussian function | y = yasym exp{–k[(t − t0)/b]c} | 150.6 | 297.5 |
6j | Modified Gaussian function | y = y0 + yasym exp{–k[(t − t0)/b]c} | 152.7 | 271.1 |
6k | Lorentzian peak function | y = yasym/{1 + [(t − t0)/b]2} | 154.0 | 346.7 |
6l | Modified Lorentzian peak function | y = y0 + yasym/{1 + [(t − t0)/b]2} | 151.0 | 300.4 |
Development Stages (Observed) | Mediterranean Semi-Arid Environment | ||||
---|---|---|---|---|---|
Growth Stages (Predicted) | |||||
Stage I | Stage II | Stage III | Stage IV | Total | |
From 1.1 to 1.5 BBCH | 24 | 0 | 0 | 0 | 24 |
From 1.6 to 1.10 BBCH | 10 | 18 | 0 | 0 | 28 |
From 1.11 to 1.15 BBCH | 0 | 9 | 8 | 1 | 18 |
From 1.16 to 1.20 BBCH | 0 | 5 | 23 | 55 | 83 |
Total | 34 | 32 | 31 | 56 | 153 |
Validation parameters: | |||||
Accuracy | 0.93 | 0.84 | 0.78 | 0.81 | |
Precision | 0.71 | 0.56 | 0.26 | 0.98 | |
Recall | 1.00 | 0.64 | 0.44 | 0.66 | |
F1-Score | 0.83 | 0.60 | 0.33 | 0.79 | |
Match: | 69% | ||||
Mismatch: | 31% |
Development Stages (Observed) | Subtropical Environment | ||||
---|---|---|---|---|---|
Growth Stages (Predicted) | |||||
Stage I | Stage II | Stage III | Stage IV | Total | |
From 1.1 to 1.5 BBCH | 35 | 5 | 0 | 0 | 40 |
From 1.6 to 1.10 BBCH | 12 | 21 | 5 | 0 | 38 |
From 1.11 to 1.15 BBCH | 2 | 8 | 24 | 2 | 36 |
From 1.16 to 1.20 BBCH | 0 | 1 | 18 | 47 | 66 |
Total | 49 | 35 | 47 | 49 | 180 |
Validation parameters: | |||||
Accuracy | 0.89 | 0.82 | 0.80 | 0.88 | |
Precision | 0.71 | 0.60 | 0.51 | 0.96 | |
Recall | 0.87 | 0.55 | 0.67 | 0.71 | |
F1-Score | 0.79 | 0.57 | 0.58 | 0.82 | |
Match: | 71% | ||||
Mismatch: | 29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agehara, S.; Carrubba, A.; Sarno, M.; Marceddu, R. Phenological Assessment of Hops (Humulus lupulus L.) Grown in Semi-Arid and Subtropical Climates Through BBCH Scale and a Thermal-Based Growth Model. Agronomy 2024, 14, 3045. https://doi.org/10.3390/agronomy14123045
Agehara S, Carrubba A, Sarno M, Marceddu R. Phenological Assessment of Hops (Humulus lupulus L.) Grown in Semi-Arid and Subtropical Climates Through BBCH Scale and a Thermal-Based Growth Model. Agronomy. 2024; 14(12):3045. https://doi.org/10.3390/agronomy14123045
Chicago/Turabian StyleAgehara, Shinsuke, Alessandra Carrubba, Mauro Sarno, and Roberto Marceddu. 2024. "Phenological Assessment of Hops (Humulus lupulus L.) Grown in Semi-Arid and Subtropical Climates Through BBCH Scale and a Thermal-Based Growth Model" Agronomy 14, no. 12: 3045. https://doi.org/10.3390/agronomy14123045
APA StyleAgehara, S., Carrubba, A., Sarno, M., & Marceddu, R. (2024). Phenological Assessment of Hops (Humulus lupulus L.) Grown in Semi-Arid and Subtropical Climates Through BBCH Scale and a Thermal-Based Growth Model. Agronomy, 14(12), 3045. https://doi.org/10.3390/agronomy14123045