A Novel Approach to Enhancing Pesticide Spraying Effectiveness on Citrus Leaves: Adjusting Soil Moisture Content to Improve Leaf Wettability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant
2.2. Test Environment
2.3. Methods
2.3.1. Soil Moisture Content Setting
2.3.2. Leaf Selection and Treatment
2.3.3. Leaf Surface Feature and the Roughness Factor
2.3.4. Static Contact Angle Measurement and the Contact Angle Model
2.3.5. Calculation of the Apparent Surface Free Energy
3. Results
3.1. Leaf Surface Features
3.2. Leaf Surface Roughness Factor
3.3. Static Contact Angle and the Apparent Surface Free Energy of Leaves
4. Discussion
4.1. Effect of the Soil Moisture Content on the Leaf Surface Features
4.2. Effect of the Soil Moisture Content on the Leaf Wettability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, Y.; Guo, R.; Fan, R.; Liu, Z.; Kong, W.; Zhang, P.; Du, F.P. Wettability of pear leaves from three regions characterized at different stages after flowering using the owrk method. Pest Manag. Sci. 2018, 74, 1804–1809. [Google Scholar] [CrossRef]
- Delele, M.A.; Nuyttens, D.; Duga, A.T.; Ambaw, A.; Lebeau, F.; Nicolai, B.M.; Verboven, P. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces. Soft Matter 2016, 12, 7195–7211. [Google Scholar] [CrossRef]
- He, Y.; Wu, J.; Xiao, S.; Fang, H.; Zheng, Q. Investigating the wettability of rapeseed leaves. Appl. Eng. Agric. 2021, 37, 399–409. [Google Scholar] [CrossRef]
- Nairn, J.J.; Forster, W.A. Methods for evaluating leaf surface free energy and polarity having accounted for surface roughness. Pest Manag. Sci. 2017, 73, 1854–1865. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, H.; Li, Y.; Wang, Y. The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion. PLoS ONE 2014, 9, e107062. [Google Scholar] [CrossRef] [PubMed]
- Nairn, J.J.; Forster, W.A.; van Leeuwen, R.M. Quantification of physical (roughness) and chemical (dielectric constant) leaf surface properties relevant to wettability and adhesion. Pest Manag. Sci. 2011, 67, 1562–1570. [Google Scholar] [CrossRef]
- Feng, Y.; Guo, X.; Li, Y.; Li, G.; Yu, Q.; Zhang, R. Effects of surface free energy of crops leaves and spry adjuvants onthe wettability of pesticide solution on five crop leaves. Nongyaoxue Xuebao 2022, 24, 1466–1472. [Google Scholar]
- Kang, H.; Graybill, P.M.; Fleetwood, S.; Boreyko, J.B.; Jung, S. Seasonal changes in morphology govern wettability of katsura leaves. PLoS ONE 2018, 13, e202900. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Duan, J.; Jiang, T.; Yang, Z. Microscale mechanism of microstructure, micromorphology and janus wettability of the banana leaf surface. Micron 2021, 146, 103073. [Google Scholar] [CrossRef]
- Leca, A.; Rouby, F.; Saudreau, M.; Lacointe, A. Apple leaf wettability variability as a function of genotype and apple scab susceptibility. Sci. Hortic. 2020, 260, 108890. [Google Scholar] [CrossRef]
- Papierowska, E.; Szatyłowicz, J.; Samborski, S.; Szewińska, J.; Różańska, E. The leaf wettability of various potato cultivars. Plants 2020, 9, 504. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gao, Y.; Zhang, C.; Zhu, Y.; Lei, J.; Ma, Y.; Du, F. ; Wettability of ionic surfactants sds and dtab on wheat (Triticum aestivum) leaf surfaces. J. Disper. Sci. Technol. 2018, 39, 1820–1828. [Google Scholar] [CrossRef]
- Zhu, F.; Cao, C.; Cao, L.; Li, F.; Du, F.; Huang, Q. Wetting behavior and maximum retention of aqueous surfactant solutions on tea leaves. Molecules 2019, 24, 2094. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Huang, Q.; Huang, G.; Liu, M.; Cao, L.; Li, F.; Zhao, P.; Cao, C. The Effects of Adjuvants on the Wetting and Deposition of Insecticide Solutions on Hydrophobic Wheat Leaves. Agronomy 2022, 12, 2148. [Google Scholar] [CrossRef]
- Holloway, P.J. Surface factors affecting the wetting of leaves. Pestic. Sci. 1970, 1, 156–163. [Google Scholar] [CrossRef]
- Bao, L.; Fan, H.; Chen, Y.; Yan, J.; Yang, T.; Guo, Y. Effect of surface free energy and wettability on the adhesion property of waterborne polyurethane adhesive. RSC Adv. 2016, 6, 99346–99352. [Google Scholar] [CrossRef]
- Yuan, Y.; Lee, T.R. Surface Science Techniques; Bracco, G., Holst, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–34. [Google Scholar]
- Guo, H.L.; Xie, Z.; Shaw, J.; Dixon, K.; Jiang, Z.T.; Yin, C.Y.; Liu, X. Elucidating the surface geometric design of hydrophobic australian eucalyptus leaves: Experimental and modeling studies. Heliyon 2019, 5, e1316. [Google Scholar] [CrossRef] [PubMed]
- Bachurová, M.; Wiener, J. Free Energy Balance of Polyamide, Polyester and Polypropylene Surfaces. J. Eng. Fibers Fabr. 2012, 7, 155892501200700411. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, H.; Xu, L.; Zhu, H.; Huang, H. Effect of surfactant concentration on the spreading properties of pesticide droplets on eucalyptus leaves. Biosyst. Eng. 2016, 143, 42–49. [Google Scholar] [CrossRef]
- He, B.; Patankar, N.A.; Lee, J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 2003, 19, 4999–5003. [Google Scholar] [CrossRef]
- Fernandez, V.; Khayet, M. Evaluation of the surface free energy of plant surfaces: Toward standardizing the procedure. Front. Plant Sci. 2015, 6, 510. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ding, L.; Waterhouse, G.; Li, B.; Liu, F.; Li, P. Performance matching between the surface structure of cucumber powdery mildew in different growth stages and the properties of surfactant solution. Pest Manag. Sci. 2021, 77, 3538–3546. [Google Scholar] [CrossRef]
- Gao, P.; Xie, J.; Yang, M.; Zhou, P.; Liang, G.; Chen, Y.; Sun, D.; Han, X.; Wang, W. Predicting the photosynthetic rate of chinese brassica using deep learning methods. Agronomy 2021, 11, 2145. [Google Scholar] [CrossRef]
- Fan, R.; Zhang, X.; Zhou, L.; Cao, C.; Du, F. Research on the wettability of peach leaf surfaces by OWRK method. Chin. J. Pestic. Sci. 2011, 13, 79–83. [Google Scholar]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D. Contact angles. Discuss. Faraday Soc. 1948, 3, 11–16. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. ; Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Lei, J.; Ma, Y.; Du, F. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes. Wuli Huaxue Xuebao 2017, 33, 1846–1854. [Google Scholar]
- Prajapati, D.G.; Rowthu, S. Unravelling the anisotropic wetting properties of banana leaves with water and human urine. Surf. Interfaces 2022, 29, 101742. [Google Scholar] [CrossRef]
- Shao, F.; Wang, L.; Sun, F.; Li, G.; Yu, L.; Wang, Y.; Zeng, X.; Yan, H.; Dong, L.; Bao, Z. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in hangzhou, china. Sci. Total Environ. 2019, 652, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, Y.; Cao, Y.; Li, G.; Liao, Y. Influence of surface roughness on contact angle hysteresis and spreading work. Colloid Polym. Sci. 2020, 298, 1107–1112. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, H.; Hu, J.; Zhao, M.; Liu, S.; Zeng, S. Surface free energies and their fractions of differenf tobacco leaves in Yunnan. J. Northwest AF Univ. 2013, 41, 75–78. [Google Scholar]
Test Liquid | Apparent Surface Free Energy (mJ/m2) | Dispersion Component (mJ/m2) | Polar Component (mJ/m2) |
---|---|---|---|
Distilled water | 72.8 | 29.1 | 43.7 |
N, N-dimethylformamide | 37.3 | 32.42 | 4.88 |
Leaf Surface | Polar Component | T5 (mJ/m2) | T4 (mJ/m2) | T3 (mJ/m2) | T2 (mJ/m2) | T1 (mJ/m2) |
---|---|---|---|---|---|---|
Adaxial surface | Apparent surface free energy | 18.61 | 6.23 | 5.44 | 5.03 | 10.24 |
Polar component | 0.35 | 2.43 | 5.27 | 4.13 | 0.92 | |
Dispersion component | 18.26 | 3.80 | 0.17 | 0.90 | 9.32 | |
Abaxial surface | Apparent surface free energy | 15.64 | 15.42 | 5.68 | 8.39 | 25.35 |
Polar component | 0.54 | 0.50 | 2.98 | 1.51 | 0.06 | |
dispersion component | 15.10 | 14.92 | 2.70 | 6.88 | 25.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Sun, D.; Xue, X.; Xiahou, B.; Dai, Q.; Song, S. A Novel Approach to Enhancing Pesticide Spraying Effectiveness on Citrus Leaves: Adjusting Soil Moisture Content to Improve Leaf Wettability. Agronomy 2024, 14, 3065. https://doi.org/10.3390/agronomy14123065
Zhou X, Sun D, Xue X, Xiahou B, Dai Q, Song S. A Novel Approach to Enhancing Pesticide Spraying Effectiveness on Citrus Leaves: Adjusting Soil Moisture Content to Improve Leaf Wettability. Agronomy. 2024; 14(12):3065. https://doi.org/10.3390/agronomy14123065
Chicago/Turabian StyleZhou, Xien, Daozong Sun, Xiuyun Xue, Bing Xiahou, Qiufang Dai, and Shuran Song. 2024. "A Novel Approach to Enhancing Pesticide Spraying Effectiveness on Citrus Leaves: Adjusting Soil Moisture Content to Improve Leaf Wettability" Agronomy 14, no. 12: 3065. https://doi.org/10.3390/agronomy14123065
APA StyleZhou, X., Sun, D., Xue, X., Xiahou, B., Dai, Q., & Song, S. (2024). A Novel Approach to Enhancing Pesticide Spraying Effectiveness on Citrus Leaves: Adjusting Soil Moisture Content to Improve Leaf Wettability. Agronomy, 14(12), 3065. https://doi.org/10.3390/agronomy14123065