The Effect of Airflow-Assisted Parameters on Droplet Deposition on Soybean Leaves at the V7 Growth Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Phenotypic Characteristics and Physicochemical Properties
2.2. Force Analysis and Mathematical Model Development
2.2.1. Force Analysis of Soybean Plants Under Auxiliary Airflow
2.2.2. Force Analysis of Soybean Leaves Under the Influence of Auxiliary Airflow
2.3. Leaf Surface Droplet Deposition: Numerical Modeling and Analysis
2.3.1. Single-Factor Simulation Experiments on Factors Affecting Leaf Orientation
2.3.2. Multi-Factor Simulation Test for Droplet Deposition
2.4. Field Experiment
2.4.1. Experimental Conditions
2.4.2. Experimental Procedures and Methods
3. Results and Discussion
3.1. Analysis of the Results of the Single-Factor Simulation Experiment on Leaf Orientation
3.2. Consistency Check of the Fluid–Structure Interaction (FSI) Model for the Plant Population
3.3. Droplet Deposition Simulation Results, Parameter Optimization, and Discussion
3.4. Field Comparison Test Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foqué, D.; Nuyttens, D. Effects of nozzle type and spray angle on spray deposition in ivy pot plants. Pest Manag. Sci. 2011, 67, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Isanda, G.O. Phaeolus Vulgaris Cv. Rosecoco-glp-2 seed Contaminatoin and Infection by Colletotrichum Lindemuthianum (SACC & MAGN) BRI & CAV., and Implications on Disease Incidence and Severity; Faculty of Agriculture, University of Nairobi: Nairobi, Kenya, 1995. [Google Scholar]
- Feng, P.C.; Baley, G.J.; Clinton, W.P.; Bunkers, G.J.; Alibhai, M.F.; Paulitz, T.C.; Kidwell, K.K. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean. Proc. Natl. Acad. Sci. USA 2005, 102, 17290–17295. [Google Scholar] [CrossRef] [PubMed]
- Seversike, T.M.; Purcell, L.C.; Gbur, E.; Chen, P.; Scott, R. Radiation interception and yield response to increased leaflet number in early-maturing soybean genotypes. Crop Sci. 2009, 49, 281–289. [Google Scholar] [CrossRef]
- Marimuthu, T.; Suganthy, M.; Nakkeeran, S. Common pests and diseases of medicinal plants and strategies to manage them. New Age Herb. Resour. Qual. Pharmacogn. 2018, 289–312. [Google Scholar]
- Singh, B.B.; Singh, R. Major rice insect pests in Northeastern UP. Int. J. Life Sci. Biotechnol. Pharma Res. 2014, 1, 124–143. [Google Scholar]
- Ortega, A. Insect Pests of Maize: A Guide for Field Identification; Cimmyt: El Batan, Mexico, 1987. [Google Scholar]
- Singh, S.; Emden, H.V. Insect pests of grain legumes. Annu. Rev. Entomol. 1979, 24, 255–278. [Google Scholar] [CrossRef]
- Wan, L.; Li, H.; Li, C.; Wang, A.; Yang, Y.; Wang, P. Hyperspectral sensing of plant diseases: Principle and methods. Agronomy 2022, 12, 1451. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Zhen, J.; Lei, X.; Chen, Y. Resistance characteristics of broad-leaf crop canopy in air-assisted spray field and their effects on droplet deposition. Front. Plant Sci. 2022, 13, 924749. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Rakocevic, M.; Caverzan, A.; Boller, W.; Chavarria, G. Architectural characteristics and heliotropism may improve spray droplet deposition in the middle and low canopy layers in soybean. Crop Sci. 2018, 58, 2029–2041. [Google Scholar] [CrossRef]
- Yu, S.; Cui, L.; Cui, H.; Liu, X.; Liu, J.; Xin, Z.; Yuan, J.; Wang, D. Spray performance of flexible shield canopy opener and rotor wind integrated boom-sprayer application in soybean: Effects on droplet deposition distribution. Pest Manag. Sci. 2024, 80, 3334–3348. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.R.; Sousa Alves, G.; Silva, S.M.; Hachiya, T.S.S.; Guimarães, H.T.S.; Costa, G.A.; Gonçalves, F.S.; Oliveira, M.A. Air Assistance and Electrostatic Spraying in Soybean Crops. Agrochemicals 2024, 3, 107–117. [Google Scholar] [CrossRef]
- Virdi, K.S.; Sreekanta, S.; Dobbels, A.; Haaning, A.; Jarquin, D.; Stupar, R.M.; Lorenz, A.J.; Muehlbauer, G.J. Branch angle and leaflet shape are associated with canopy coverage in soybean. Plant Genome 2023, 16, e20304. [Google Scholar] [CrossRef] [PubMed]
- Sun, C. Design and experimental assessment of a field-spraying system with nozzles employing reciprocating up-and-down movements. Pest Manag. Sci. 2023, 79, 5387–5392. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, X.; Gong, Y.; Liu, D.; Chen, J.; Wang, G.; Zhang, X. Design and test of powerful air-assisted sprayer for high stalk crops. Front. Plant Sci. 2023, 14, 1266791. [Google Scholar] [CrossRef] [PubMed]
- Rocamora, M.; Val, L.; Pérez, M. PM—Power and Machinery: Modelling the Performance of Air-assisted Spraying on Artichoke. Biosyst. Eng. 2002, 81, 385–393. [Google Scholar] [CrossRef]
- Foqué, D.; Pieters, J.G.; Nuyttens, D. Spray deposition and distribution in a bay laurel crop as affected by nozzle type, air assistance and spray direction when using vertical spray booms. Crop Prot. 2012, 41, 77–87. [Google Scholar] [CrossRef]
- Duga, A.T.; Ruysen, K.; Dekeyser, D.; Nuyttens, D.; Bylemans, D.; Nicolai, B.M.; Verboven, P. Spray deposition profiles in pome fruit trees: Effects of sprayer design, training system and tree canopy characteristics. Crop Prot. 2015, 67, 200–213. [Google Scholar] [CrossRef]
- Qiu, W.; Guo, H.; Zheng, H.; Cao, Y.; Lv, X.; Fang, J.; Zhai, C.; Yu, H. CFD modelling to analyze the droplets deposition behavior on vibrating rice leaves. Comput. Electron. Agric. 2022, 201, 107330. [Google Scholar] [CrossRef]
- Cui, H.; Wang, C.; Liu, X.; Yuan, J.; Liu, Y. Dynamic simulation of fluid-structure interactions between leaves and airflow during air-assisted spraying: A case study of cotton. Comput. Electron. Agric. 2023, 209, 107817. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Y.; Lan, Y.; Zhang, P.; He, Y.; Zhou, Z.; Chen, J. A new alternative for assessing ridging information of potato plants based on an improved benchmark structure from motion. Comput. Electron. Agric. 2023, 213, 108220. [Google Scholar] [CrossRef]
- Jin, Y.; Song, Z.; Zhang, R.; Zhang, J. Experiment and analysis of physical, mechanical, and viscoelastic properties of the roots and stalks of green leafy vegetables. PLoS ONE 2024, 19, e0305572. [Google Scholar] [CrossRef] [PubMed]
- Zaboon, J.K.; Jassim, S.F. Numerical and analytical analysis for deflection and stress in a simply supported beam. Mater. Today: Proc. 2022, 49, 2912–2915. [Google Scholar]
- Kane, B.; Smiley, E.T. Drag coefficients and crown area estimation of red maple. Can. J. For. Res. 2006, 36, 1951–1958. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, L.; Xue, X. Test and analysis on air attenuation & diffusion law of air-assisted spraying. J. Agric. Mech. Res. 2019, 41, 201–204. [Google Scholar]
- Meyers, T.; Tha Paw, U.K. Testing of a higher-order closure model for modeling airflow within and above plant canopies. Bound. Layer Meteorol. 1986, 37, 297–311. [Google Scholar] [CrossRef]
- Cui, H.; Wang, C.; Liu, X.; Yuan, J.; Liu, Y.; Song, L. Cotton canopy airflow simulation and velocity attenuation model based upon 3D phenotype and stratified sub-regional porous medium. Comput. Electron. Agric. 2022, 201, 107282. [Google Scholar] [CrossRef]
- Qiu, W.; Guo, H.; Cao, Y.; Li, X.; Wu, J.; Chen, Y.; Yu, H.; Zhang, Z. An electrical vortex air-assisted spraying system for improving droplet deposition on rice. Pest Manag. Sci. 2022, 78, 4037–4047. [Google Scholar] [CrossRef] [PubMed]
- Jun, W.; Xiang, D.; Herong, Y.; Jinjiang, W.; Tie, Z.; Yahui, Z. Experiment on Spraying Performance of Air-assisted Boom Sprayer in Corn Field. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2015, 46, 80–84. [Google Scholar]
- Panneton, B.; Piché, M. Interaction between application volume, airflow, and spray quality in air-assisted spraying. Trans. ASAE 2005, 48, 37–44. [Google Scholar] [CrossRef]
- Song, J.L.; He, X.K.; Yang, X.L. Influence of nozzle orientation on spray deposits. Trans. CSAE 2006, 22, 96–99. [Google Scholar]
- Višacki, V.V.; Sedlar, A.D.; Gil, E.; Bugarin, R.M.; Turan, J.J.; Janic, T.V.; Burg, P. Effects of sprayer boom height and operating pressure on the spray uniformity and distribution model development. Appl. Eng. Agric. 2016, 32, 341–346. [Google Scholar]
- Padhee, D.; Verma, S.; Rajwade, S.; Ekka, H.; Chandniha, S.; Tiwari, S. Evaluating the effect of nozzle type, nozzle height and operating pressure on spraying performance using a horizontal spray patternator. J. Pharmacogn. Phytochem. 2019, 8, 2137–2141. [Google Scholar]
- Ahmad, F.; Zhang, S.; Qiu, B.; Ma, J.; Xin, H.; Qiu, W.; Ahmed, S.; Chandio, F.A.; Khaliq, A. Comparison of water sensitive paper and glass strip sampling approaches to access spray deposit by UAV sprayers. Agronomy 2022, 12, 1302. [Google Scholar] [CrossRef]
- Chao, F.; Chengsheng, Z.; Fanyu, K.; Jing, W. Effects of spray height and spray angle on spray deposition in tobacco plants. In Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 21–23 June 2011; pp. 2390–2393. [Google Scholar]
- Wu, S.; Liu, J.; Wang, J.; Hao, D.; Wang, R. The motion of strawberry leaves in an air-assisted spray field and its influence on droplet deposition. Trans. ASABE 2021, 64, 83–93. [Google Scholar] [CrossRef]
- Li, T.; Qi, P.; Wang, Z.; Xu, S.; Huang, Z.; Han, L.; He, X. Evaluation of the effects of airflow distribution patterns on deposit coverage and spray penetration in multi-unit air-assisted sprayer. Agronomy 2022, 12, 944. [Google Scholar] [CrossRef]
- Cao, Y.; Xi, T.; Xu, L.; Qiu, W.; Guo, H.; Lv, X.; Li, C. Computational fluid dynamics simulation experimental verification and analysis of droplets deposition behaviour on vibrating pear leaves. Plant Methods 2022, 18, 80. [Google Scholar] [CrossRef]
- Fan, G.; Wang, S.; Bai, P.; Wang, D.; Shi, W.; Niu, C. Research on droplets deposition characteristics of anti-drift spray device with multi-airflow synergy based on CFD simulation. Appl. Sci. 2022, 12, 7082. [Google Scholar] [CrossRef]
- Zhong, W.; Zhou, H.; Jia, W.; Xue, F. Numerical simulation on deposition of atomization droplet of air-assist boom spraying in air flow. Proc. J. Phys. Conf. Ser. 2020, 1637, 012145. [Google Scholar] [CrossRef]
- Dai, S.; Ou, M.; Du, W.; Yang, X.; Dong, X.; Jiang, L.; Zhang, T.; Ding, S.; Jia, W. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Front. Plant Sci. 2023, 14, 1184244. [Google Scholar] [CrossRef]
- Sun, D.; Hu, J.; Huang, X.; Luo, W.; Song, S.; Xue, X. Study on the Improvement of Droplet Penetration Effect by Nozzle Tilt Angle under the Influence of Orthogonal Side Wind. Sensors 2024, 24, 2685. [Google Scholar] [CrossRef]
- Fattahi, S.H.; Abdollah Pour, S. Sensitivity analysis of variables affecting spray drift from pesticides for their environmental risk assessments on agricultural lands. Environ. Dev. Sustain. 2024, 1–21. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, R.; Yang, J.; Chen, L. Development status and key technologies of plant protection UAVs in China: A review. Drones 2022, 6, 354. [Google Scholar] [CrossRef]
- Raabe, K.; Pisek, J.; Sonnentag, O.; Annuk, K. Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species. Agric. For. Meteorol. 2015, 214, 2–11. [Google Scholar] [CrossRef]
- Bawhey, C.I.; Grant, R.H.; Gao, W. Digital measurement of heliotropic leaf response in soybean cultivars and leaf exposure to solar UVB radiation. Agric. For. Meteorol. 2003, 120, 161–175. [Google Scholar] [CrossRef]
- Moulia, B.G.P.B.B. Wind impacts on plant growth, mechanics and. Int. J. Clim. 2009, 459, 437–459. [Google Scholar]
- Gosselin, F.P. Mechanics of a plant in fluid flow. J. Exp. Bot. 2019, 70, 3533–3548. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Cao, C.; Chen, Z.; Cao, L.; Huang, Q.; Song, B. Efficient pesticide formulation and regulation mechanism for improving the deposition of droplets on the leaves of rice (Oryza sativa L.). Pest Manag. Sci. 2021, 77, 3198–3207. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, T.; Che, Z. Droplet deformation and breakup in shear flow of air. Phys. Fluids 2020, 32, 052109. [Google Scholar] [CrossRef]
- Spillman, J.J. Spray impaction, retention and adhesion: An introduction to basic characteristics. Pestic. Sci. 1984, 15, 97–106. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Yu, S.; Wang, P.; Liu, H.; Yang, X. Anti-drift technology Progress of plant protection applied to orchards: A review. Agronomy 2023, 13, 2679. [Google Scholar] [CrossRef]
- Li, J.; Cui, H.; Ma, Y.; Xun, L.; Li, Z.; Yang, Z.; Lu, H. Orchard spray study: A prediction model of droplet deposition states on leaf surfaces. Agronomy 2020, 10, 747. [Google Scholar] [CrossRef]
- Yan, C.; Tan, H.; Niu, C.; Shen, C.; Xu, L. Spray deposition in an artificial grapevine canopy as affected by spray angle regulation systems of radial airflow air-assisted sprayers. Crop Prot. 2024, 178, 106588. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Lei, X.; Wang, S.; Li, X.; Norton, T. Canopy segmentation method for determining the spray deposition rate in orchards. Agronomy 2022, 12, 1195. [Google Scholar] [CrossRef]
- Jiao, Q.; Sun, Q.; Zhang, B.; Huang, W.; Ye, H.; Zhang, Z.; Zhang, X.; Qian, B. A random forest algorithm for retrieving canopy chlorophyll content of wheat and soybean trained with PROSAIL simulations using adjusted average leaf angle. Remote Sens. 2021, 14, 98. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Ma, Y.; Cui, H.; Yang, Z.; Lu, H. Effects of leaf response velocity on spray deposition with an air-assisted orchard sprayer. Int. J. Agric. Biol. Eng. 2021, 14, 123–132. [Google Scholar] [CrossRef]
- Ozkan, H.; Paul, P.; Derksen, R.; Zhu, H. Influence of Application Equipment on Deposition of Spray Droplets in Wheat Canopy; Ohio State University: Columbus, OH, USA, 2011. [Google Scholar]
- Juliatti, F.C.; Juliatti, B.; Jaccoud-Filho, D. Technology of pesticide application in corn–nozzles, sprays volume, economic analysis and diseases control. In Fungicides–Showcases of Integrated Plant Disease Management from Around the World; IntechOpen: London, UK, 2013; pp. 99–114. [Google Scholar]
- Yezekyan, T.; Marinello, F.; Armentano, G.; Sartori, L. Analysis of cost and performances of agricultural machinery: Reference model for sprayers. Agron. Res. 2018, 16, 604–614. [Google Scholar]
- Morales-Rodríguez, P.A.; Cano Cano, E.; Villena, J.; López-Perales, J.A. A comparison between conventional sprayers and new UAV sprayers: A study case of vineyards and olives in extremadura (Spain). Agronomy 2022, 12, 1307. [Google Scholar] [CrossRef]
- Felsot, A.S.; Unsworth, J.B.; Linders, J.B.; Roberts, G.; Rautman, D.; Harris, C.; Carazo, E. Agrochemical spray drift; assessment and mitigation—A review. J. Environ. Sci. Health Part B 2010, 46, 1–23. [Google Scholar] [CrossRef]
- Marrs, R.; Williams, C.; Frost, A.; Plant, R. Assessment of the effects of herbicide spray drift on a range of plant species of conservation interest. Environ. Pollut. 1989, 59, 71–86. [Google Scholar] [CrossRef]
Canopy | Leaf Length (mm) | Petiole Length (mm) | Leaf Width (mm) |
---|---|---|---|
Upper canopy | 100 | 30 | 70 |
Middle canopy | 85 | 25 | 60 |
Lower canopy | 70 | 20 | 50 |
Leaf Surface Elastic Modulus (MPa) | Petiole Elastic Modulus (MPa) | Stem Elastic Modulus (MPa) |
---|---|---|
47.5 | 2.5 | 1180 |
Level | Initial Airflow Velocity (m/s) | Outlet-to-Canopy Distance (m) | Airflow Forward Deflection Angle (deg) |
---|---|---|---|
1 | 5.0 | 0.3 | 10 |
2 | 10.0 | 0.4 | 20 |
3 | 15.0 | 0.5 | 30 |
4 | 20.0 | 0.6 | 40 |
5 | 25.0 | 0.7 | 50 |
Level | Initial Airflow Velocity (m/s) | Outlet-to-Canopy Distance (m) | Airflow Forward Deflection Angle (deg) |
---|---|---|---|
−1 | 15.0 | 0.4 | 20 |
0 | 17.5 | 0.5 | 30 |
1 | 20.0 | 0.6 | 40 |
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | Significance Level |
---|---|---|---|---|---|---|
Model | 313.95 | 9 | 34.88 | 15.50 | 0.0008 | ** |
A | 80.65 | 1 | 80.65 | 35.83 | 0.0006 | ** |
B | 56.18 | 1 | 56.18 | 24.96 | 0.0016 | * |
C | 16.82 | 1 | 16.82 | 7.47 | 0.0292 | * |
AB | 26.01 | 1 | 26.01 | 11.55 | 0.0115 | * |
AC | 0.49 | 1 | 0.49 | 0.22 | 0.6550 | |
BC | 0.090 | 1 | 0.090 | 0.040 | 0.8472 | |
A2 | 29.12 | 1 | 29.12 | 12.94 | 0.0088 | ** |
B2 | 10.51 | 1 | 10.51 | 4.67 | 0.0675 | |
C2 | 82.63 | 1 | 82.63 | 36.71 | 0.0005 | ** |
Lack of fit | 3.80 | 3 | 1.27 | 0.42 | 0.7463 | |
Error | 11.95 | 4 | 2.99 | |||
Total sum | 329.71 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, H.; Sun, W.; Sun, Y.; Xing, R.; Zhang, K.; Fang, X.; Sui, B.; Xu, J. The Effect of Airflow-Assisted Parameters on Droplet Deposition on Soybean Leaves at the V7 Growth Stage. Agronomy 2025, 15, 141. https://doi.org/10.3390/agronomy15010141
Guo Y, Wang H, Sun W, Sun Y, Xing R, Zhang K, Fang X, Sui B, Xu J. The Effect of Airflow-Assisted Parameters on Droplet Deposition on Soybean Leaves at the V7 Growth Stage. Agronomy. 2025; 15(1):141. https://doi.org/10.3390/agronomy15010141
Chicago/Turabian StyleGuo, Yuefu, Hao Wang, Wenfeng Sun, Yongli Sun, Rui Xing, Kaige Zhang, Xiaocheng Fang, Bin Sui, and Jiehao Xu. 2025. "The Effect of Airflow-Assisted Parameters on Droplet Deposition on Soybean Leaves at the V7 Growth Stage" Agronomy 15, no. 1: 141. https://doi.org/10.3390/agronomy15010141
APA StyleGuo, Y., Wang, H., Sun, W., Sun, Y., Xing, R., Zhang, K., Fang, X., Sui, B., & Xu, J. (2025). The Effect of Airflow-Assisted Parameters on Droplet Deposition on Soybean Leaves at the V7 Growth Stage. Agronomy, 15(1), 141. https://doi.org/10.3390/agronomy15010141