Iron Biofortification of Red and Green Pigmented Lettuce in Closed Soilless Cultivation Impacts Crop Performance and Modulates Mineral and Bioactive Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Chamber Conditions, Lettuce Cultivars and Experimental Design
2.2. Growth Analysis, Biomass Determination and Radiation Use Efficiency
2.3. Collection of Samples for Mineral and Nutritional Quality Analyses
2.4. Mineral Analysis by Ion Chromatography and ICP-OES
2.5. Total Ascorbic Acid Analysis
2.6. Lipophilic Antioxidant Activity Analysis
2.7. Phenolic Acids and Anthocyanins Identification and Quantification
2.8. Carotenoids Identification and Quantification
2.9. Statistics
3. Results and Discussion
3.1. Growth Response, Fresh Yield, Dry Matter and Radiation Use Efficiency
3.2. Nitrate Content, Mineral Composition and Iron Biofortification
3.3. Hydrophilic Antioxidants: Ascorbic Acid and Phenolics Profile
3.4. Lipophilic Antioxidant Activity and Target Carotenoids Profile
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murgia, I.; Arosio, P.; Tarantino, D.; Soave, C. Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci. 2012, 17. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, A.; Wrochna, M.; Małecka-Przybysz, M.; Gawrońska, H.; Gawroński, S.W. Vegetable sprouts enriched with iron: Effects on yield, ROS generation and antioxidative system. Sci. Hortic. 2016, 203, 110–117. [Google Scholar] [CrossRef]
- Sperotto, R.A.; Ricachenevsky, F.K.; de Abreu Waldow, V.; Palma Fett, J. Iron biofortification in rice: It’s a long way to the top. Plant Sci. 2012, 190, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- FAO/WHO. Human Vitamin and Mineral Requirements; Report of a joint FAO/WHO expert consultation Bangkok, Thailand; FAO: Rome, Italy, 2001. [Google Scholar]
- Gowthami, V.S.S.; Ananda, N. Dry matter production, yield and yield components of groundnut (Arachis hypogaea L.) genotypes as influenced by zinc and iron through ferti-ortification. Indian J. Agric. Res. 2017, 51, 339–344. [Google Scholar] [CrossRef]
- Gillooly, M.; Bothwell, T.H.; Torrance, J.D.; MacPhail, A.P.; Derman, D.P.; Bezwoda, W.R.; Mills, W.; Charlton, R.W. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br. J. Nutr. 1983, 49, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Siegenberg, D.; Baynes, R.D.; Bothwell, T.H.; Macfarlane, B.J.; Lamparelli, R.D.; Car, N.G.; MacPhail, P.; Schmidt, U.; Tal, A.; Mayet, F. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am. J. Clin. Nutr. 1991, 53, 537–541. [Google Scholar] [CrossRef]
- Finkelstein, J.L.; Haas, J.D.; Mehta, S. Iron-biofortified staple food crops for improving iron status: A review of the current evidence. Curr. Opin. Biotechnol. 2017, 44, 138–145. [Google Scholar] [CrossRef]
- La Frano, M.R.; de Moura, F.F.; Boy, E.; Lönnerdal, B.; Burri, B.J. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr. Rev. 2014, 72, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.G.; Oliva, M.A.; Rosado-Souza, L.; Mendes, G.C.; Colares, D.S.; Stopato, C.H.; Almeida, A.M. Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci. 2013, 201–202, 81–92. [Google Scholar] [CrossRef] [PubMed]
- De Souza Pinto, S.; de Souza, A.E.; io Oliva, M.A.; Gusmão Pereira, E.G. Oxidative damage and photosynthetic impairment in tropical rice cultivars upon exposure to excess iron. Sci. Agric. 2016, 73, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Frei, M.; Narh Tetteh, R.; Razafindrazaka, A.L.; Fuh, M.A.; Wu, L.B.; Becker, M. Responses of rice to chronic and acute iron toxicity: Genotypic differences and biofortification aspects. Plant Soil 2016, 408, 149–161. [Google Scholar] [CrossRef]
- Adamski, M.J.; Peters, J.A.; Danieloski, R.; Bacarin, M.A. Excess iron-induced changes in the photosynthetic characteristics of sweet potato. J. Plant Physiol. 2011, 168, 2056–2062. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Sairam, R.K.; Meena, R.C.; Tyagi, A.; Srivastava, G.C. Effect of Excess and Deficient Levels of Iron and Copper on Oxidative Stress and Antioxidant Enzymes Activity in Wheat. J. Plant Sci. 2006, 1, 86–97. [Google Scholar] [CrossRef]
- Li, X.; Ma, H.; Jia, P.; Wang, J.; Jia, L.; Zhang, T.; Yang, Y.; Chen, H.; Wei, X. Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicol. Environ. Saf. 2012, 86, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Hemalatha, K.; Venkatesan, S. Impact of iron toxicity on certain enzymes and biochemical parameters of tea. Asian J. Biochem. 2011, 6, 384–394. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C. Enhancing quality of fresh vegetables through salinity eustress and biofortification applications facilitated by soilless cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hortic. 2005, 105, 177–195. [Google Scholar] [CrossRef]
- Rouphael, Y.; Rea, E.; Cardarelli, M.; Bitterlich, M.; Schwarz, D.; Colla, G. Can Adverse Effects of Acidity and Aluminum Toxicity Be Alleviated by Appropriate Rootstock Selection in Cucumber? Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Bernardo, L.; Kane, D.; Trevisan, M.; Lucini, L. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity. Front. Plant Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Svecova, E.; Rea, E.; Lucini, L. Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 2013, 93, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Borgognone, D.; Rouphael, Y.; Cardarelli, M.; Lucini, L.; Colla, G. Changes in Biomass, Mineral Composition, and Quality of Cardoon in Response to NO3-:Cl- Ratio and Nitrate Deprivation from the Nutrient Solution. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef]
- Fanasca, S.; Colla, G.; Maiani, G.; Venneria, E.; Rouphael, Y.; Azzini, E.; Saccardo, F. Changes in Antioxidant Content of Tomato Fruits in Response to Cultivar and Nutrient Solution Composition. J. Agric. Food Chem. 2006, 54, 4319–4325. [Google Scholar] [CrossRef] [PubMed]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barbern, F.A.; Gil, M.I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health beneficts of lettuce (Lactuca sativa L.). J. Food Comp. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Kyracou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.L.; Rock, E.; Michel, H.; Amouroux, P.; Remesy, C. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Mou, B. Genetic variation of Beta-carotene and Lutein Contents in Lettuce. J. Am. Soc. Hort. Sci. 2005, 130, 870–876. [Google Scholar] [CrossRef]
- Lebeda, A.; Ryder, E.J.; Grube, R.; Dolezalov, A.I.; Kristkova, E. Lettuce (Asteraceae; Lactuca spp.). In Genetic Ressources, Chromosone Engineering, and Crop Improvement; Singh, R.K., Ed.; Vegetable Crops. CRC Press. Tailor and Francis Group: Boca Raton, FL, USA, 2007; Volume 3, pp. 377–472. [Google Scholar]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Cardarelli, M.; Bassal, A.; Leonardi, C.; Giuffrida, F.; Colla, G. Vegetable quality as affected by genetic, agronomic and environmental factors. J. Food Agric. Environ. 2012, 10, 680–688. [Google Scholar]
- Rouphael, Y.; Kyriacou, M.C.; Vitaglione, P.; Giordano, M.; Pannico, A.; Colantuono, A.; De Pascale, S. Genotypic variation in nutritional and antioxidant profile among iceberg lettuce cultivars. Acta Sci. Pol. Hortorum Cultus 2017, 16, 37–45. [Google Scholar] [CrossRef]
- Tyksinski, W.; Komosa, A. After effect of iron chelates on the yielding and iron content in greenhouse lettuce. Acta Sci. Pol. Hortorum Cultus 2008, 7, 3–10. [Google Scholar]
- Kozik, E.; Tyksiñski, W.; Bosiacki, M.A. Comparison of the efficiency of organic and mineral iron compounds in the greenhouse cultivation of lettuce. J. Elementol. 2011, 16, 59–68. [Google Scholar] [CrossRef]
- Inoue, K.; Kondo, S.; Adachi, A.; Yokota, H. Production of iron enriched vegetables: Effect of feeding time on the rate of increase in foliar iron content and foliar injury. J. Hortic. Sci. Biotechnol. 2000, 75, 209–213. [Google Scholar] [CrossRef]
- Tomasi, N.; Pinton, R.; Dalla Costa, L.; Cortella, G.; Terzano, R.; Mimmo, T.; Scampicchio, M.; Cesco, S. New ‘solutions’ for floating cultivation system of ready-to-eat salad: A review. Trends Food Sci. Technol. 2015, 46, 267–276. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Van Montagu, M.; Inzé, D. Extraction and determination of ascorbate and 504 dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Pellegrini, N.; Re, R.; Yang, M.; Rice-Evans, C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2′-azinobis(3-ethylenebenzothiazoline-6- sulfonic acid radical cation decolorization assay. Meth. Enzymol. 1999, 299, 379–384. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Oms-Oliu, G.; Odriozola-Serrano, I.; Lamuela-Raventós, R.M.; Martín-Belloso, O.; Elez-Martínez, P. Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments. Food Chem. 2013, 136, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Lebeda, A.; Doležalová, I.; Astley, D. Representation of wild Lactuca spp. (Asteraceae, Lactuceae) in world genebank collections. Genetic Res. Crop Evol. 2004, 51, 167–174. [Google Scholar] [CrossRef]
- Lebeda, A.; Doležalová, I.; Feráková, V.; Astley, D. Geographical distribution of wild Lactuca spp. (Asteraceae, Lactuceae). Botanic. Rev. 2004, 70, 328–356. [Google Scholar] [CrossRef]
- Lebeda, A.; Křístková, E.; Kitner, M.; Mieslerová, B.; Jemelková, M.; Pink, D.A.C. Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding. Eur. J. Plant Pathol. 2014, 138, 597–640. [Google Scholar] [CrossRef]
- Urrestarazu, M.; Alvaro, J.E.; Moreno, S. Remediation of Iron Chlorosis by the Addition of Fe-o,o-EDDHA in the Nutrient Solution Applied to Soilless Culture. HortScience 2008, 43, 1434–1436. [Google Scholar] [CrossRef] [Green Version]
- Roosta, H.R.; Pourebrahimi, M.; Hamidpour, M. Effects of bicarbonate and different Fe sources on vegetative growth and physiological characteristics of bell pepper (Capsicum annuum L.) plants in hydroponic system. J. Plant Nutr. 2015, 38, 397–416. [Google Scholar] [CrossRef]
- Roosta, H.R.; Jalali, M.; Shahrbabaki, S.M.A.V. Effect of Nano Fe-Chelate, Fe-Eddha and FeSO4 on Vegetative Growth, Physiological Parameters and Some Nutrient Elements Concentrations of Four Varieties of Lettuce (Lactuca sativa L.) In NFT System. J. Plant Nutr. 2015, 38, 2176–2184. [Google Scholar] [CrossRef]
- Filho, A.B.C.; Cortez, J.W.M.; de Sordi, D.; Urrestarazu, M. Common Chicory Performance as Influenced by Iron Concentration in the Nutrient Solution. J. Plant Nutr. 2015, 38, 1489–1494. [Google Scholar] [CrossRef]
- De Dorlodot, S.; Lutts, S.; Pierre Bertin, P. Effects of Ferrous Iron Toxicity on the Growth and Mineral Composition of an Interspecific Rice. J. Plant Nutr. 2005, 28, 1–20. [Google Scholar] [CrossRef]
- Briat, J.F.; Dubos, C.; Gaymard, F. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci. 2015, 20. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals: Occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishizawa, N.K. Iron uptake translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 2012, 63, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 1258/2011. Commission Regulation (EU) No 1258/2011 of 2 of December 2011 amending Regulation (EC) No 1881/2006 as Regardsmaximum Level for Nitrates in Foodstuffs; Official Journal of the European Union: Brussels, Belgum, 2011. [Google Scholar]
- Liu, W.; Yang, Q.; Du, L.; Cheng, R.; Zhou, W. Nutrient supplementation increased growth and nitrate concentration of lettuce cultivated hydroponically with biogas slurry. Acta Agric. Scand. Section B Soil Plant Sci. 2011, 61, 391–394. [Google Scholar] [CrossRef]
- Iacuzzo, F.; Gottardi, S.; Tomasi, N.; Savoia, E.; Tommasi, R.; Cortella, G.; Terzano, R.; Pinton, R.; Dalla Costa, L.; Cesco, S. Corn salad (Valerianella locusta (L.) Laterr.) growth in a water-saving floating system as affected by iron and sulfate availability. J. Sci. Food. Agric. 2011, 91, 344–354. [Google Scholar] [CrossRef]
- USDA. National Nutrient database for Standard Reference Release 28; USDA: Washington, DC, USA, 2015.
- Kawashima, L.M.; Soares, L.M.V. Mineral profile of raw and cooked leafy vegetables consumed in Southern Brazil. J. Food Compos. Anal. 2003, 16, 605–611. [Google Scholar] [CrossRef]
- Baslam, M.; Idoia, G.; Nieves, G. The arbuscular mycorrhizal symbiosis can overcome reductions inyield and nutritional quality in greenhouse-lettuces cultivated atinappropriate growing seasons. Sci. Hortic. 2013, 164, 145–154. [Google Scholar] [CrossRef]
- Snowden, R.E.D.; Wheeler, D. Chemical changes in selected wetland plant species with increasing Fe supply, with specific reference to root precipitates and Fe tolerance. New Phytol. 1995, 131, 503–520. [Google Scholar] [CrossRef]
- Lombi, E.K.L.; Tearall, J.R.; Horwath, J.R.; Zhao, F.J.; Hawkesford, M.J.; McGrath, S.P. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 2002, 128, 1359–1367. [Google Scholar] [CrossRef]
- Souza-Santos, P.; Ramos, R.S.; Ferreira, S.T.; Carvalho-Alves, P.C. Iron-induced oxidative damage of corn root plasma membrane H+-ATPase. Biochem Biophys. Acta 2001, 1512, 357–366. [Google Scholar] [CrossRef]
- Li, K.; Hu, G.; Yu, S.; Tang, Q.; Liu, J. Effect of the iron biofortification on enzymes activities and antioxidant properties in germinated brown rice. J. Food Meas. Characteriz. 2018, 12, 789–799. [Google Scholar] [CrossRef]
- Smirnoff, N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic. Biol. Med. 2018, 122, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Song, C.; Chen, H.; Duan, B.; Zhang, Z.; Meng, J. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil. Food Chem. 2018, 253, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Hoseini, N.M.; Chaichi, M.R.; Alipour, H.; Dashtaki, M.; Safikhani, S. Influence of nano-iron oxide and zinc sulfate on physiological characteristics of peppermint. Comm. Soil Sci. Plant Anal. 2018, 49, 2315–2326. [Google Scholar] [CrossRef]
- Shi, P.; Li, B.; Chen, H.; Song, C.; Meng, J.; Zi, Z.; Zhang, Z. Iron supply affects anthocyanin content and related gene expression in berries of Vitis vinifera cv. Cabernet Sauvignon. Molecules 2017, 22, 283. [Google Scholar] [CrossRef] [PubMed]
- Khanam, U.K.S.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Funct. Foods 2012, 4, 979–987. [Google Scholar] [CrossRef]
- Orsini, F.; Maggio, A.; Rouphael, Y.; De Pascale, S. “Physiological quality" of organically grown vegetables. Sci. Hortic. 2016, 208, 131–139. [Google Scholar] [CrossRef]
Source of Variance | Leaf Area | Leaf Number | Fresh Biomass | Dry Biomass | Dry Matter | RUE |
---|---|---|---|---|---|---|
(cm2 Plant−1) | (no. Plant−1) | (g Plant−1) | (g Plant−1) | (%) | (g mol−1) | |
Cultivar (C) | ||||||
Green Salanova | 1070 ± 64 | 45.94 ± 3.11 | 60.73 ± 7.22 | 3.21 ± 0.19 | 5.32 ± 0.38 | 0.14 ± 0.01 |
Red Salanova | 1211 ± 74 | 54.46 ± 2.33 | 66.37 ± 7.85 | 3.76 ± 0.30 | 5.69 ± 0.31 | 0.17 ± 0.01 |
t-value | 0.000 | 0.000 | 0.081 | 0.000 | 0.016 | 0.000 |
Iron (mM Fe) (I) | ||||||
0.015 | 1196 ± 125 a | 50.10 ± 5.13 | 71.50 ± 4.70 a | 3.72 ± 0.49 a | 5.19 ± 0.39 c | 0.17 ± 0.02 a |
0.5 | 1185 ± 63 a | 49.68 ± 4.26 | 67.40 ± 2.67 a | 3.59 ± 0.21 ab | 5.32 ± 0.19 bc | 0.16 ± 0.01 ab |
1 | 1091 ± 64 b | 48.66 ± 6.48 | 61.85 ± 5.52 b | 3.43 ± 0.33 b | 5.55 ± 0.16 b | 0.15 ± 0.01 b |
2 | 1090 ± 96 b | 52.36 ± 4.98 | 53.44 ± 2.91 c | 3.19 ± 0.25 c | 5.96 ± 0.27 a | 0.14 ± 0.01 c |
*** | ns | *** | *** | *** | *** | |
C × I | ||||||
Green Salanova × 0.015 mM Fe | 1089 ± 48 cde | 45.57 ± 0.86 | 67.67 ± 1.35 | 3.29 ± 0.07 de | 4.86 ± 0.18 | 0.15 ± 0.00 cd |
Green Salanova × 0.5 mM Fe | 1135 ± 33 bcd | 46.80 ± 3.45 | 66.13 ± 0.90 | 3.41 ± 0.10 bcd | 5.16 ± 0.08 | 0.15 ± 0.00 bc |
Green Salanova × 1 mM Fe | 1052 ± 72 de | 42.96 ± 2.34 | 57.51 ± 4.27 | 3.15 ± 0.14 de | 5.49 ± 0.22 | 0.14 ± 0.01 cd |
Green Salanova × 2 mM Fe | 1004 ± 18 e | 48.45 ± 3.32 | 51.61 ± 3.02 | 2.97 ± 0.09 e | 5.77 ± 0.16 | 0.13 ± 0.00 d |
Red Salanova × 0.015 mM Fe | 1302 ± 50 a | 54.62 ± 1.90 | 75.34 ± 3.05 | 4.15 ± 0.22 a | 5.51 ± 0.19 | 0.19 ± 0.01 a |
Red Salanova × 0.5 mM Fe | 1236 ± 31 ab | 52.57 ± 2.92 | 68.66 ± 3.49 | 3.76 ± 0.12 b | 5.48 ± 0.10 | 0.17 ± 0.01 b |
Red Salanova × 1 mM Fe | 1130 ± 25 bcd | 54.35 ± 1.48 | 66.20 ± 1.16 | 3.72 ± 0.07 bc | 5.62 ± 0.07 | 0.17 ± 0.00 b |
Red Salanova × 2 mM Fe | 1177± 23 bc | 56.28 ± 2.26 | 55.26 ± 1.43 | 3.40 ± 0.11 cd | 6.16 ± 0.20 | 0.15 ± 0.01 bc |
* | ns | ns | * | ns | * |
Source of Variance | Nitrate | P | K | Ca | Mg |
---|---|---|---|---|---|
(mg kg−1 FW) | (g kg−1 DW) | (g kg−1 DW) | (g kg−1 DW) | (g kg−1 DW) | |
Cultivar (C) | |||||
Green Salanova | 2277 ± 224 | 4.81 ± 0.28 | 62.67 ± 2.39 | 6.47 ± 0.72 | 2.01 ± 0.16 |
Red Salanova | 2105 ± 93 | 5.17 ± 0.16 | 69.01 ± 3.18 | 5.73 ± 1.05 | 2.06 ± 0.32 |
t-value | 0.023 | 0.001 | 0.000 | 0.056 | 0.615 |
Iron (mM Fe) (I) | |||||
0.015 | 1991 ± 41 c | 4.84 ± 0.30 b | 67.32 ± 4.16 ab | 7.08 ± 0.41 a | 2.30 ± 0.18 a |
0.5 | 2228 ± 115 b | 5.10 ± 0.29 ab | 68.57 ± 4.05 a | 6.50 ± 0.63 b | 2.14 ± 0.05 ab |
1 | 2192 ± 136 b | 4.85 ± 0.28 b | 65.42 ± 3.65 b | 5.69 ± 0.59 c | 1.97 ± 0.16 b |
2 | 2351 ± 226 a | 5.15 ± 0.19 a | 62.05 ± 2.65 c | 5.12 ± 0.76 c | 1.74 ± 0.13 c |
*** | ** | *** | *** | *** | |
C × I | |||||
Green Salanova × 0.015 mM Fe | 1999 ± 27 c | 4.58 ± 0.05 | 63.71 ± 1.88 | 7.01 ± 0.62 abc | 2.17 ± 0.18 ab |
Green Salanova × 0.5 mM Fe | 2267 ± 163 b | 4.88 ± 0.17 | 65.12 ± 1.72 | 7.05 ± 0.30 ab | 2.09± 0.01 bc |
Green Salanova × 1 mM Fe | 2295 ± 109 b | 4.67 ± 0.32 | 62.18 ± 0.54 | 6.03 ± 0.62 bcd | 1.93 ± 0.06 bcd |
Green Salanova × 2 mM Fe | 2545 ± 110 a | 5.09 ± 0.26 | 59.67 ± 0.33 | 5.79 ± 0.26 d | 1.84 ± 0.05 cd |
Red Salanova × 0.015 mM Fe | 1983 ± 57 c | 5.10 ± 0.16 | 70.93 ± 0.82 | 7.16 ± 0.17 a | 2.43 ± 0.05 a |
Red Salanova × 0.5 mM Fe | 2190 ± 42 bc | 5.33 ± 0.16 | 72.02 ± 1.50 | 5.95 ± 0.07 cd | 2.19 ± 0.02 ab |
Red Salanova × 1 mM Fe | 2089 ± 50 bc | 5.03 ± 0.06 | 68.66 ± 1.21 | 5.35 ± 0.38 d | 2.00 ± 0.23 bc |
Red Salanova × 2 mM Fe | 2157 ± 53 bc | 5.21 ± 0.12 | 64.43 ± 0.64 | 4.45 ± 0.20 e | 1.63 ± 0.07 d |
** | ns | ns | * | * |
Source of Variance | Caffeoyl Tartaric Acid | Chlorogenic Acid | Chicoric Acid | Caffeoyl Meso Tartaric Acid | ∑ Phenolic Acids |
---|---|---|---|---|---|
(mg 100 g−1 DW) | (mg 100 g−1 DW) | (mg 100 g−1 DW) | (mg 100 g−1 DW) | (mg 100g−1 DW) | |
Cultivar (C) | |||||
Green Salanova | 15.92 ± 6.6 | 7.30 ± 2.4 | 72.62 ± 22.4 | 2.26 ± 1.4 | 98.1 ± 30 |
Red Salanova | 6.62 ± 3.2 | 58.74 ± 29.4 | 114.89 ± 52.7 | 28.92 ± 7.8 | 209.2 ± 75 |
t-value | 0.000 | 0.000 | 0.018 | 0.000 | 0.000 |
Iron (mM Fe) (I) | |||||
0.015 | 10.81 ± 8.8 ab | 26.77 ± 18.8 b | 117.18 ± 31.3 a | 16.29 ± 13.1 a | 171.1 ± 55 a |
0.5 | 8.81 ± 1.7 b | 48.90 ± 47.5 a | 106.7 ± 53.9 a 1 | 17.09 ± 16.5 a | 181.5 ± 114 a |
1 | 8.79 ± 4.5 b | 13.04 ± 9.1 c | 45.47 ± 11.8 b | 19.16 ± 20.1 a | 86.5 ± 21 b |
2 | 16.68 ± 8.5 a | 43.37 | 105.66 ± 38.7 a | 9.81 ± 9.4 b | 175.5 ± 74 a |
** | *** | *** | *** | *** | |
C × I | |||||
Green Salanova × 0.015 mM Fe | 18.28 ± 4.9 | 9.66 ± 1.0 e | 89.92 ± 12.2 bcd | 4.39 ± 0.5 d | 122.3 ± 15 c |
Green Salanova × 0.5 mM Fe | 10.00 ± 0.3 | 5.59 ± 0.5 e | 61.41 ± 25.2 cd | 2.11 ± 0.6 d | 79.1 ± 26 c |
Green Salanova × 1 mM Fe | 12.65 ± 2.4 | 4.70 ± 0.8 e | 52.85 ± 9.5 d | 1.27 ± 0.1 d | 71.5 ± 13 c |
Green Salanova × 2 mM Fe | 22.74 ± 8.1 | 9.25 ± 0.3 e | 86.32 ± 19.4 bcd | 1.25± 0.2 d | 119.6 ± 28 c |
Red Salanova × 0.015 mM Fe | 3.33 ± 0.2 | 43.88 ± 2.0 c | 144.44 ± 8.5 ab | 28.19 ± 1.0 b | 219.8 ± 10 b |
Red Salanova × 0.5 mM Fe | 7.61 ± 1.8 | 92.21 ± 3.5 a | 152.01 ± 21.5 a | 32.07 ± 1.9 ab | 283.9 ± 18 a |
Red Salanova × 1 mM Fe | 4.93 ± 0.9 | 21.37 ± 0.3 d | 38.10 ± 9.8 d | 37.05 ± 6.9 a | 101.5 ± 18 c |
Red Salanova × 2 mM Fe | 10.62 ± 2.6 | 77.48 ± 9.8 b | 125.00 ± 47.3 abc | 18.37 ± 1.9 c | 231.5 ± 59 b |
ns | *** | ** | *** | *** |
Source of Variance | Violaxanthin + Neoxanthin | Lutein | β-Cryptoxanthin | β-Carotene |
---|---|---|---|---|
(μg Violaxanthin eq. g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | |
Cultivar (C) | ||||
Green Salanova | 612.4 ± 52 | 256.3 ± 39 | 426.8 ± 61 | 230.8 ± 27 |
Red Salanova | 1273.7 ± 170 | 604.7 ± 65 | 1072.8 ± 87 | 416.2 ± 48 |
t-value | 0.000 | 0.000 | 0.000 | 0.000 |
Iron (mM Fe) (I) | ||||
0.015 | 827.7 ± 267 c | 394.2 ± 188 b | 720.6 ± 332 bc | 290.7 ± 90 c |
0.5 | 901.6 ± 383 bc | 421.9 ± 217 b | 701.5 ± 360 c | 298.7 ± 106 c |
1 | 963.0 ± 361 b | 426.2 ± 161 b | 775.4 ± 352 a | 334.9 ± 84 b |
2 | 1080.0 ± 453 a | 479.8 ± 213 a | 801.7 ± 393 a | 369.5 ± 129 a |
*** | * | ** | *** | |
C × I | ||||
Green Salanova × 0.015 mM Fe | 587.7 ± 18 d | 228.5 ± 29 | 425.2 ± 42 | 208.8 ± 3 e |
Green Salanova × 0.5 mM Fe | 552.4 ± 9 d | 226.0 ± 26 | 380.4 ± 92 | 203.0 ± 1 e |
Green Salanova × 1 mM Fe | 635.3 ± 42 d | 283.5 ± 37 | 458.2 ± 68 | 259.4 ± 14 d |
Green Salanova × 2 mM Fe | 674.0 ± 13 d | 287.3 ± 23 | 443.5 ± 26 | 251.8 ± 6 d |
Red Salanova × 0.015 mM Fe | 1067.7 ± 73 c | 559.8 ± 75 | 1015.9 ± 110 | 372.6 ± 10 c |
Red Salanova × 0.5 mM Fe | 1250.8 ± 36 b | 617.8 ± 42 | 1022.7 ± 74 | 394.4 ± 20 b |
Red Salanova × 1 mM Fe | 1290.6 ± 42 b | 568.8 ± 46 | 1092.6 ± 57 | 410.5 ± 22 b |
Red Salanova × 2 mM Fe | 1485.9 ± 132 a | 672.3 ± 43 | 1159.8 ± 16 | 487.2 ± 17 a |
** | ns | ns | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, M.; El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Stazi, S.R.; De Pascale, S.; Rouphael, Y. Iron Biofortification of Red and Green Pigmented Lettuce in Closed Soilless Cultivation Impacts Crop Performance and Modulates Mineral and Bioactive Composition. Agronomy 2019, 9, 290. https://doi.org/10.3390/agronomy9060290
Giordano M, El-Nakhel C, Pannico A, Kyriacou MC, Stazi SR, De Pascale S, Rouphael Y. Iron Biofortification of Red and Green Pigmented Lettuce in Closed Soilless Cultivation Impacts Crop Performance and Modulates Mineral and Bioactive Composition. Agronomy. 2019; 9(6):290. https://doi.org/10.3390/agronomy9060290
Chicago/Turabian StyleGiordano, Maria, Christophe El-Nakhel, Antonio Pannico, Marios C. Kyriacou, Silvia Rita Stazi, Stefania De Pascale, and Youssef Rouphael. 2019. "Iron Biofortification of Red and Green Pigmented Lettuce in Closed Soilless Cultivation Impacts Crop Performance and Modulates Mineral and Bioactive Composition" Agronomy 9, no. 6: 290. https://doi.org/10.3390/agronomy9060290
APA StyleGiordano, M., El-Nakhel, C., Pannico, A., Kyriacou, M. C., Stazi, S. R., De Pascale, S., & Rouphael, Y. (2019). Iron Biofortification of Red and Green Pigmented Lettuce in Closed Soilless Cultivation Impacts Crop Performance and Modulates Mineral and Bioactive Composition. Agronomy, 9(6), 290. https://doi.org/10.3390/agronomy9060290