Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Methane Mitigation Strategies
3.1. Red Macro Algae as a Feed Supplement
3.2. 3-Nitrooxypropanol (3-NOP) as a Feed Supplement
3.3. Manipulating the Rumen Microbial Population
3.4. Tropical Legumes as Plantation Forage or Feed Supplements
3.5. Grape Marc as a Feed Supplement
3.6. Genetic Selection
3.7. Nitrate as a Feed Supplement
3.8. Australian Shrubs or Plant Compounds as Feed Supplements
3.9. Vaccination against Archaea
3.10. Feeding Wheat to Grazing Dairy Cows
3.11. Biochar as a Feed Supplement
3.12. Best Grazing Management Practices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arora, N.K.; Fatima, T.; Mishra, I.; Verma, M.; Mishra, J.; Mishra, V. Environmental sustainability: Challenges and viable solutions. Environ. Sustain. 2018, 1, 309–340. [Google Scholar] [CrossRef]
- Manabe, S. Role of greenhouse gas in climate change. Tellus A Dyn. Meteorol. Oceanogr. 2019, 71, 1620078. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. Climate Change Indicators: Atmospheric Concentrations of Greenhouse Gases. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases (accessed on 26 January 2021).
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- Global Methane Initiative. Global Methane Emissions and Mitigation Opportunities. Available online: https://www.globalmethane.org/documents/analysis_fs_en.pdf (accessed on 26 January 2021).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 978-92-5-107920-1. [Google Scholar]
- Ripple, W.J.; Smith, P.; Haberl, H.; Montzka, S.A.; McAlpine, C.; Boucher, D.H. Ruminants, climate change and climate policy. Nat. Clim. Chang. 2014, 4, 2–5. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, S2–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clauss, M.; Dittmann, M.T.; Vendl, C.; Hagen, K.B.; Frei, S.; Ortmann, S.; Müller, D.W.H.; Hammer, S.; Munn, A.J.; Schwarm, A.; et al. Review: Comparative methane production in mammalian herbivores. Animal 2020, 14, S113–S123. [Google Scholar] [CrossRef] [Green Version]
- Bryngelsson, D.; Wirsenius, S.; Hedenus, F.; Sonesson, U. How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy 2016, 59, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Pais, D.F.; Marques, A.C.; Fuinhas, J.A. Reducing Meat Consumption to Mitigate Climate Change and Promote Health: But Is It Good for the Economy? Environ. Model. Assess. 2020, 25, 793–807. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture–Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://www.fao.org/3/y4252e/y4252e07.htm (accessed on 9 March 2021).
- Department of Industry, Science, Energy and Resources. Emissions Reduction Fund. Available online: https://www.industry.gov.au/funding-and-incentives/emissions-reduction-fund (accessed on 9 March 2021).
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Mayberry, D.; Bartlett, H.; Moss, J.; Davison, T.; Herrero, M. Pathways to carbon-neutrality for the Australian red meat sector. Agric. Syst. 2019, 175, 13–21. [Google Scholar] [CrossRef]
- Meat & Livestock Australia. National Livestock Methane Program. Available online: http://www.mla.com.au/Research-and-development/Environment-sustainability/National-livestock-methane-program (accessed on 29 August 2016).
- Cottle, D.J.; Nolan, J.V.; Wiedemann, S.G. Ruminant enteric methane mitigation: A review. Anim. Prod. Sci. 2011, 51, 491–514. [Google Scholar] [CrossRef]
- Eckard, R.J.; Grainger, C.; de Klein, C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.O. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davison, T.M.; Black, J.L.; Moss, J.F. Red meat—An essential partner to reduce global greenhouse gas emissions. Anim. Front. 2020, 10, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Norman, H.; Kinley, R.; Laurence, M.; Wilmot, M.; Bender, H.; Nys, R.d.; Tomkins, N. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 2016, 58, 681–688. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Stefenoni, H.A.; Räisänen, S.E.; Cueva, S.F.; Wasson, D.E.; Lage, C.F.A.; Melgar, A.; Fetter, M.E.; Smith, P.; Hennessy, M.; Vecchiarelli, B.; et al. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J. Dairy Sci. 2021, 104, 4157–4173. [Google Scholar] [CrossRef]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Muizelaar, W.; Groot, M.; van Duinkerken, G.; Peters, R.; Dijkstra, J. Safety and Transfer Study: Transfer of Bromoform Present in Asparagopsis taxiformis to Milk and Urine of Lactating Dairy Cows. Foods 2021, 10, 584. [Google Scholar] [CrossRef]
- McCrabb, G.J.; Berger, K.T.; Magner, T.; May, C.; Hunter, R.A. Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust. J. Agric. Res. 1997, 48, 323–329. [Google Scholar] [CrossRef]
- Mitsumori, M.; Shinkai, T.; Takenaka, A.; Enishi, O.; Higuchi, K.; Kobayashi, Y.; Nonaka, I.; Asanuma, N.; Denman, S.E.; McSweeney, C.S. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br. J. Nutr. 2012, 108, 482–491. [Google Scholar] [CrossRef]
- Tomkins, N.W.; Colegate, S.M.; Hunter, R.A. A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Anim. Prod. Sci. 2009, 49, 1053–1058. [Google Scholar] [CrossRef]
- Abdela, N. Sub-acute Ruminal Acidosis (SARA) and its Consequence in Dairy Cattle: A Review of Past and Recent Research at Global Prospective. Achiev. Life Sci. 2016, 10, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Mata, L.; Lawton, R.J.; Magnusson, M.; Andreakis, N.; de Nys, R.; Paul, N.A. Within-species and temperature-related variation in the growth and natural products of the red alga Asparagopsis taxiformis. J. Appl. Phycol. 2017, 29, 1437–1447. [Google Scholar] [CrossRef]
- Sea Forest. Available online: https://www.seaforest.com.au/ (accessed on 6 February 2021).
- Kindermann, M.; Walker, N.; Nieuwland, M.V. Taking Action on Climate Change, Together: Summary of Scientific Research How 3-NOP Effectively Reduces Enteric Methane Emissions from Cows; Report DSM: Version 1. Issued at the Occasion of the 7th Greenhouse Gas and Animal Agriculture Conference, Iguassu Falls, Brazil, 4–10 August 2019; DSM: Heerlen, The Netherlands, 2019. [Google Scholar]
- Duin, E.C.; Wagner, T.; Shima, S.; Prakash, D.; Cronin, B.; Yáñez-Ruiz, D.R.; Duval, S.; Rümbeli, R.; Stemmler, R.T.; Thauer, R.K. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Natl. Acad. Sci. USA 2016, 113, 6172–6177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, S.; Kindermann, M. WO2012/084629—Use of Nitrooxy Organic Molecules in Feed for Reducing Methane Emission in Ruminants, and/or to Improve Ruminant Performance. U.S. Patent 20140147529 A1, 23 February 2016. [Google Scholar]
- Haisan, J.; Sun, Y.; Guan, L.L.; Beauchemin, K.A.; Iwaasa, A.; Duval, S.; Barreda, D.R.; Oba, M. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 2014, 97, 3110–3119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Fernández, G.; Abecia, L.; Arco, A.; Cantalapiedra-Hijar, G.; Martín-García, A.I.; Molina-Alcaide, E.; Kindermann, M.; Duval, S.; Yáñez-Ruiz, D.R. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J. Dairy Sci. 2014, 97, 3790–3799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, C.K.; Humphries, D.J.; Kirton, P.; Kindermann, M.; Duval, S.; Steinberg, W. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows. J. Dairy Sci. 2014, 97, 3777–3789. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Sarwono, K.A.; Kondo, M.; Matsui, H.; Ridla, M.; Laconi, E.B.; Nahrowi. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: A meta-analysis. Ital. J. Anim. Sci. 2018, 17, 650–656. [Google Scholar] [CrossRef] [Green Version]
- McGinn, S.; Flesch, T.; Beauchemin, K.; Shreck, A.; Kindermann, M. Micrometeorological Methods for Measuring Methane Emission Reduction at Beef Cattle Feedlots: Evaluation of 3-Nitrooxypropanol Feed Additive. J. Environ. Qual. 2019, 48, 1454–1461. [Google Scholar] [CrossRef]
- Black, J.L.; Davison, T.M.; Fennessy, P.; Cohn, P.; Sedger, A.; Empson, M. National Livestock Methane Program: National Needs and Gaps Analysis; Meat & Livestock Australia: North Sydney, Australia, 2015; Available online: http://www.mla.com.au/download/finalreports?itemId=3098 (accessed on 7 September 2016).
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Abecia, L.; Martín-García, A.; Martínez, G.; Newbold, C.; Yáñez-Ruiz, D.R. Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning. J. Anim. Sci. 2013, 91, 4832–4840. [Google Scholar] [CrossRef] [Green Version]
- Meale, S.J.; Saro-Higuera, C.; Martin, C.; Popova, M.; Bernard, A.; Yáñez-Ruiz, D.R.; Boudra, A.; Duval, S.; Morgavi, D. An Early Life Methane Inhibitor Treatment Reduced Methane Emissions in Dairy Calves. In Taking Action on Climate Change, Together: Summary of Scientific Research How 3-NOP Effectively Reduces Enteric Methane Emissions from Cows; Report DSM: Version 1. Issued at the Occasion of the 7th Greenhouse Gas and Animal Agriculture Conference, Iguassu Falls, Brazil, 4–10 August 2019; DSM: Heerlen, The Netherlands, 2019; p. 12. [Google Scholar]
- Meale, S.J.; Popova, M.; Saro, C.; Martin, C.; Bernard, A.; Lagree, M.; Yáñez-Ruiz, D.R.; Boudra, H.; Duval, S.; Morgavi, D.P. Early life dietary intervention in dairy calves results in a long-term reduction in methane emissions. Sci. Rep. 2021, 11, 3003. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef] [PubMed]
- Kaswarjono, Y.; Indarjulianto, S.; Nururrozi, A.; Raharjo, S.; Purnamaningsih, H. Brief Review: The Negative Impact Of Mimosin in L. leucocephala in Ruminant Animals and Processing Methods to Reduce Poisoning Effects on Ruminant Livestock. J. Livest. Sci. Prod. 2019, 3, 199. [Google Scholar] [CrossRef] [Green Version]
- Harrison, M.T.; McSweeney, C.; Tomkins, N.W.; Eckard, R.J. Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric. Syst. 2015, 136, 138–146. [Google Scholar] [CrossRef]
- Taylor, C.A.; Harrison, M.T.; Telfer, M.; Eckard, R. Modelled greenhouse gas emissions from beef cattle grazing irrigated leucaena in northern Australia. Anim. Prod. Sci. 2016, 56, 594–604. [Google Scholar] [CrossRef]
- Molina, I.; Angarita, E.; Mayorga, O.; Chará, J.; Barahona-Rosales, R. Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livest. Sci. 2016, 185, 24–29. [Google Scholar] [CrossRef]
- Piñeiro-Vázquez, A.T.; Canul-Solis, J.R.; Jiménez-Ferrer, G.O.; Alayón-Gamboa, J.A.; Chay-Canul, A.J.; Ayala-Burgos, A.J.; Aguilar-Pérez, C.F.; Ku-Vera, J.C. Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage. Asian Australas. J. Anim. Sci. 2018, 31, 1738. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Avilés, L.; Solorio-Sánchez, F.J.; Aguilar-Pérez, C.F.; Ayala-Burgos, A.J.; Ku-Vera, J.C. Leucaena leucocephala feeding systems for cattle production in Mexico. Trop. Grassl. Forrajes Trop. 2019, 7, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Bottini-Luzardo, M.B.; Aguilar-Pérez, C.F.; Centurión-Castro, F.G.; Solorio-Sánchez, F.J.; Ku-Vera, J.C. Milk yield and blood urea nitrogen in crossbred cows grazing Leucaena leucocephala in a silvopastoral system in the Mexican tropics. Trop. Grassl. Forrajes Trop. 2016, 4, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, P.; Charmley, E. Methane yields from Brahman cattle fed tropical grasses and legumes. Anim. Prod. Sci. 2012, 52, 225–239. [Google Scholar] [CrossRef]
- Coates, D.B.; Dixon, R.M. Faecal near infrared reflectance spectroscopy (F. NIRS) measurements of non-grass proportions in the diet of cattle grazing tropical rangelands. Rangel. J. 2007, 29, 51–63. [Google Scholar] [CrossRef]
- Vandermeulen, S.; Singh, S.; Ramírez-Restrepo, C.A.; Kinley, R.D.; Gardiner, C.P.; Holtum, J.A.; Hannah, I.; Bindelle, J. In vitro assessment of ruminal fermentation, digestibility and methane production of three species of Desmanthus for application in northern Australian grazing systems. Crop Pasture Sci. 2018, 69, 797–807. [Google Scholar] [CrossRef]
- Suybeng, B.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Malau-Aduli, A.E. Supplementing Northern Australian beef cattle with Desmanthus tropical legume reduces in-vivo methane emissions. Animals 2020, 10, 2097. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.G.; Pengelly, B.C.; Brown, S.; Donnelly, J.; Eagles, D.; Franco, M.; Hanson, J.; Mullen, B.F.; Partridge, I.; Peters, M. Tropical Forages: An Interactive Selection Tool. Available online: http://www.tropicalforages.info/ (accessed on 6 February 2021).
- Moate, P.J.; Williams, S.R.O.; Torok, V.A.; Hannah, M.C.; Ribaux, B.E.; Tavendale, M.H.; Eckard, R.J.; Jacobs, J.L.; Auldist, M.J.; Wales, W.J. Grape marc reduces methane emissions when fed to dairy cows. J. Dairy Sci. 2014, 97, 5073–5087. [Google Scholar] [CrossRef]
- Hixson, J.L.; Jacobs, J.L.; Wilkes, E.N.; Smith, P.A. Survey of the variation in grape marc condensed tannin composition and concentration and analysis of key compositional factors. J. Agric. Food Chem. 2016, 64, 7076–7086. [Google Scholar] [CrossRef]
- Hixson, J.L.; Durmic, Z.; Vadhanabhuti, J.; Vercoe, P.E.; Smith, P.A.; Wilkes, E.N. Exploiting Compositionally Similar Grape Marc Samples to Achieve Gradients of Condensed Tannin and Fatty Acids for Modulating In Vitro Methanogenesis. Molecules 2018, 23, 1793. [Google Scholar] [CrossRef] [Green Version]
- Moate, P.J.; Jacobs, J.L.; Hixson, J.L.; Deighton, M.H.; Hannah, M.C.; Morris, G.L.; Ribaux, B.E.; Wales, W.J.; Williams, S.R.O. Effects of Feeding either Red or White Grape Marc on Milk Production and Methane Emissions from Early-Lactation Dairy Cows. Animals 2020, 10, 976. [Google Scholar] [CrossRef]
- Jacobs, J. Enteric Methane Mitigation Strategies through Manipulation of Feeding Systems for Ruminant Production in Southern Australia; Meat & Livestock Australia Limited: North Sydney, Australia, August 2015; Available online: http://www.mla.com.au/download/finalreports?itemId=3010 (accessed on 28 August 2016).
- Hegarty, R.S.; Hirlam, K.; Phoko, M.; Hixson, J.; Hill, J. Growth and enteric methane emission of cattle consuming feedlot rations with up to 20% distilled grape marc. In Proceedings of the Recent Advances in Animal Nutrition in Australia, University of New England, Armidale, New South Wales, Australia, 26–28 October 2015; pp. 57–58. [Google Scholar]
- Pickering, N.K.; Oddy, V.H.; Basarab, J.; Cammack, K.; Hayes, B.; Hegarty, R.S.; Lassen, J.; McEwan, J.C.; Miller, S.; Pinares-Patiño, C.S. Animal board invited review: Genetic possibilities to reduce enteric methane emissions from ruminants. Animal 2015, 9, 1431–1440. [Google Scholar] [CrossRef] [Green Version]
- Goopy, J.P. Creating a low enteric methane emission ruminant: What is the evidence of success to the present and prospects for developing economies? Anim. Prod. Sci. 2019, 59, 1769–1776. [Google Scholar] [CrossRef] [Green Version]
- de Haas, Y.; Windig, J.J.; Calus, M.P.L.; Dijkstra, J.; de Haan, M.; Bannink, A.; Veerkamp, R.F. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J. Dairy Sci. 2011, 94, 6122–6134. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, K.A.; Herd, R.M.; Bird, S.H.; Arthur, P.F.; Hegarty, R.F. Preliminary genetic parameters for methane production in Australian beef cattle. In Proceedings of the Twentieth Conference Association for the Advancement of Animal Breeding and Genetics, Napier, New Zealand, 20–23 October 2013; pp. 290–293. [Google Scholar]
- Herd, R.M.; Arthur, P.F.; Donoghue, K.A.; Bird, S.H.; Bird-Gardiner, T.; Hegarty, R.S. Measures of methane production and their phenotypic relationships with dry matter intake, growth, and body composition traits in beef cattle. J. Anim. Sci. 2014, 92, 5267–5274. [Google Scholar] [CrossRef] [PubMed]
- Fennessy, P.; Byrne, T.; Proctor, L.; Amer, P. The potential impact of breeding strategies to reduce methane output from beef cattle. Anim. Prod. Sci. 2019, 59, 1598–1610. [Google Scholar] [CrossRef]
- González-Recio, O.; López-Paredes, J.; Ouatahar, L.; Charfeddine, N.; Ugarte, E.; Alenda, R.; Jiménez-Montero, J. Mitigation of greenhouse gases in dairy cattle via genetic selection: 2. Incorporating methane emissions into the breeding goal. J. Dairy Sci. 2020, 103, 7210–7221. [Google Scholar] [CrossRef]
- Pryce, J.E.; Bell, M.J. The impact of genetic selection on greenhouse-gas emissions in Australian dairy cattle. Anim. Prod. Sci. 2017, 57, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.L.; Oddy, V.H. Benefits of including methane measurements in selection strategies. J. Anim. Sci. 2016, 94, 3624–3635. [Google Scholar] [CrossRef] [Green Version]
- Hayes, B.J.; Donoghue, K.A.; Reich, C.M.; Mason, B.A.; Bird-Gardiner, T.; Herd, R.M.; Arthur, P.F. Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle. J. Anim. Sci. 2016, 94, 902–908. [Google Scholar] [CrossRef] [Green Version]
- Minson, D. Crude Protein in Forage. In Forage in Ruminant Nutrition; Academic Press, Inc.: San Diego, CA, USA, 1990; pp. 178–190. [Google Scholar]
- Leng, R.A. The Potential of Feeding Nitrate to Reduce Enteric Methane Production in Ruminants; Department of Climate Change, Commonwealth Government of Australia Canberra: Canberra, Australia, 17 September 2008; p. 82. Available online: http://www.penambulbooks.com/Downloads/Leng-Final%20Modified%20%2017-9-2008.pdf (accessed on 28 August 2016).
- van Zijderveld, S.M.; Dijkstra, J.; Gerrits, W.J.J.; Newbold, J.R.; Perdok, H.B. Dietary nitrate persistently reduces enteric methane production in lactating dairy cows. In Proceedings of the 4th International Conference on Greenhouse Gases and Animal Agriculture, Banff, AB, Canada, 3–8 October 2010; p. 127. Available online: http://library.wur.nl/WebQuery/wurpubs/418359 (accessed on 28 August 2016).
- Nolan, J.V.; Godwin, I.R.; de Raphélis-Soissan, V.; Hegarty, R.S. Managing the rumen to limit the incidence and severity of nitrite poisoning in nitrate-supplemented ruminants. Anim. Prod. Sci. 2016, 56, 1317–1329. [Google Scholar] [CrossRef]
- Lee, C.; Beauchemin, K.A. A review of feeding supplementary nitrate to ruminant animals: Nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 2014, 94, 557–570. [Google Scholar] [CrossRef]
- van Zijderveld, S.M.; Gerrits, W.J.J.; Dijkstra, J.; Newbold, J.R.; Hulshof, R.B.A.; Perdok, H.B. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci. 2011, 94, 4028–4038. [Google Scholar] [CrossRef]
- Callaghan, M.J.; Tomkins, N.W.; Benu, I.; Parker, A.J. How feasible is it to replace urea with nitrates to mitigate greenhouse gas emissions from extensively managed beef cattle? Anim. Prod. Sci. 2014, 54, 1300–1304. [Google Scholar] [CrossRef]
- Li, L.; Davis, J.; Nolan, J.; Hegarty, R. An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source. Anim. Prod. Sci. 2012, 52, 653–658. [Google Scholar] [CrossRef]
- Li, L.; Silveira, C.I.; Nolan, J.V.; Godwin, I.R.; Leng, R.A.; Hegarty, R.S. Effect of added dietary nitrate and elemental sulfur on wool growth and methane emission of Merino lambs. Anim. Prod. Sci. 2013, 53, 1195–1201. [Google Scholar] [CrossRef]
- Nolan, J.V.; Hegarty, R.S.; Hegarty, J.; Godwin, I.R.; Woodgate, R. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Anim. Prod. Sci. 2010, 50, 801–806. [Google Scholar] [CrossRef]
- Hulshof, R.B.A.; Berndt, A.; Gerrits, W.J.J.; Dijkstra, J.; van Zijderveld, S.M.; Newbold, J.R.; Perdok, H.B. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J. Anim. Sci. 2012, 90, 2317–2323. [Google Scholar] [CrossRef]
- Velazco, J.I.; Cottle, D.J.; Hegarty, R.S. Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea. Anim. Prod. Sci. 2014, 54, 1737–1740. [Google Scholar] [CrossRef]
- de Raphélis-Soissan, V.; Li, L.; Godwin, I.R.; Barnett, M.C.; Perdok, H.B.; Hegarty, R.S. Use of nitrate and Propionibacterium acidipropionici to reduce methane emissions and increase wool growth of Merino sheep. Anim. Prod. Sci. 2014, 54, 1860–1866. [Google Scholar] [CrossRef]
- Mamvura, C.I.; Cho, S.; Mbiriri, D.T.; Lee, H.-g.; Choi, N.-J. Effect of encapsulating nitrate in sesame gum on in vitro rumen fermentation parameters. Asian Australas. J. Anim. Sci. 2014, 27, 1577. [Google Scholar] [CrossRef] [Green Version]
- Granja-Salcedo, Y.T.; Fernandes, R.M.; Araujo, R.C.D.; Kishi, L.T.; Berchielli, T.T.; Resende, F.D.D.; Berndt, A.; Siqueira, G.R. Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Front. Microbiol. 2019, 10, 614. [Google Scholar] [CrossRef] [PubMed]
- Banik, B.K.; Durmic, Z.; Erskine, W.; Nichols, P.; Ghamkhar, K.; Vercoe, P. Variability of in vitro ruminal fermentation and methanogenic potential in the pasture legume biserrula (Biserrula pelecinus L.). Crop. Pasture Sci. 2013, 64, 409–416. [Google Scholar] [CrossRef]
- Li, X. Eremophila glabra Reduces Methane Production in Sheep. Ph.D. Thesis, The University of Western Australia, Perth, Australia, 2013. Available online: http://research-repository.uwa.edu.au/files/3223983/Li_Xixi_2013.pdf (accessed on 28 August 2016).
- Li, X.; Durmic, Z.; Liu, S.; McSweeney, C.S.; Vercoe, P.E. Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec. Anaerobe 2014, 29, 100–107. [Google Scholar] [CrossRef]
- Vercoe, P. Best Choice Shrub and Inter-Row Species for Reducing Methane Emissions Intensity; Meat & Livestock Australia Limited: North Sydney, Australia, 2015; Available online: http://www.mla.com.au/download/finalreports?itemId=3014 (accessed on 28 August 2016).
- Revell, D.K.; Norman, H.C.; Vercoe, P.E.; Phillips, N.; Toovey, A.; Bickell, S.; Hulm, E.; Hughes, S.; Emms, J. Australian perennial shrub species add value to the feed base of grazing livestock in low-to medium-rainfall zones. Anim. Prod. Sci. 2013, 53, 1221–1230. [Google Scholar] [CrossRef]
- Monjardino, M.; Revell, D.; Pannell, D.J. The potential contribution of forage shrubs to economic returns and environmental management in Australian dryland agricultural systems. Agric. Syst. 2010, 103, 187–197. [Google Scholar] [CrossRef]
- Monjardino, M.; Bathgate, A.; Llewellyn, R. Opportunities for plant improvement to increase the value of forage shrubs on low-rainfall mixed farms. Crop. Pasture Sci. 2014, 65, 1057–1067. [Google Scholar] [CrossRef] [Green Version]
- Vercoe, P. The Mechanism of Antimethanogenic Bioactivity of Plants in the Rumen; Meat & Livestock Australia Limited: North Sydney, Australia, 2015; Available online: http://www.mla.com.au/download/finalreports?itemId=3017 (accessed on 29 August 2016).
- Wright, A.D.G.; Kennedy, P.; O’Neill, C.J.; Toovey, A.F.; Popovski, S.; Rea, S.M.; Pimm, C.L.; Klein, L. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 2004, 22, 3976–3985. [Google Scholar] [CrossRef] [PubMed]
- Wedlock, D.N.; Janssen, P.H.; Leahy, S.C.; Shu, D.; Buddle, B.M. Progress in the development of vaccines against rumen methanogens. Animal 2013, 7, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Subharat, S.; Shu, D.; Zheng, T.; Buddle, B.M.; Janssen, P.H.; Luo, D.; Wedlock, D.N. Vaccination of cattle with a methanogen protein produces specific antibodies in the saliva which are stable in the rumen. Vet. Immunol. Immunopathol. 2015, 164, 201–207. [Google Scholar] [CrossRef]
- Baca-González, V.; Asensio-Calavia, P.; González-Acosta, S.; Pérez de la Lastra, J.M.; Morales de la Nuez, A. Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review. Vaccines 2020, 8, 460. [Google Scholar] [CrossRef]
- Williams, Y.J.; Popovski, S.; Rea, S.M.; Skillman, L.C.; Toovey, A.F.; Northwood, K.S.; Wright, A.-D.G. A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl. Environ. Microbiol. 2009, 75, 1860–1866. [Google Scholar] [CrossRef] [Green Version]
- Moate, P.J.; Williams, S.R.O.; Deighton, M.H.; Wales, W.J. A comparison between wheat or maize grain fed as a high proportion of the diet on milk production and methane emissions from dairy cows. In Proceedings of the 5th Australasian Dairy Science Symposium, Melbourne, Australia, 13–15 November 2012; pp. 452–453. Available online: https://www.researchgate.net/publication/274007509_A_comparison_between_wheat_or_maize_grain_fed_as_a_high_proportion_of_the_diet_on_milk_production_and_methane_emissions_from_dairy_cows (accessed on 2 September 2016).
- Moate, P.J.; Williams, S.R.O.; Deighton, M.H.; Wales, W.J.; Jacobs, J.L. Supplementary feeding of wheat to cows fed harvested pasture increases milk production and reduces methane yield. In Proceedings of the 5th Australasian Dairy Science Symposium, Hamilton, New Zealand, 19–21 November 2014; pp. 176–178. Available online: https://www.researchgate.net/publication/268217431_Supplementary_feeding_of_wheat_to_cows_fed_harvested_pasture_increases_milk_production_and_reduces_methane_yield (accessed on 11 March 2021).
- Moate, P.; Williams, S.; Deighton, M.; Hannah, M.; Ribaux, B.; Morris, G.; Jacobs, J.; Hill, J.; Wales, W. Effects of feeding wheat or corn and of rumen fistulation on milk production and methane emissions of dairy cows. Anim. Prod. Sci. 2019, 59, 891–905. [Google Scholar] [CrossRef]
- Moate, P.; Deighton, M.; Jacobs, J.; Ribaux, B.; Morris, G.; Hannah, M.; Mapleson, D.; Islam, M.; Wales, W.; Williams, S. Influence of proportion of wheat in a pasture-based diet on milk yield, methane emissions, methane yield, and ruminal protozoa of dairy cows. J. Dairy Sci. 2020, 103, 2373–2386. [Google Scholar] [CrossRef] [PubMed]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
- Hansen, H.H.; Storm, I.M.L.D.; Sell, A.M. Effect of biochar on in vitro rumen methane production. Acta Agric. Scand. Sect. A Anim. Sci. 2012, 62, 305–309. [Google Scholar] [CrossRef]
- Leng, R.A.; Inthapanya, S.; Preston, T.R. Biochar lowers net methane production from rumen fluid in vitro. Livest. Res. Rural Dev. 2012, 24, 103. [Google Scholar]
- Leng, R.A.; Inthapanya, S.; Preston, T.R. All biochars are not equal in lowering methane production in in vitro rumen incubations. Livest. Res. Rural Dev. 2013, 25, 106. [Google Scholar]
- Saleem, A.M.; Ribeiro Jr, G.O.; Yang, W.Z.; Ran, T.; Beauchemin, K.A.; McGeough, E.J.; Ominski, K.H.; Okine, E.K.; McAllister, T.A. Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet. J. Anim. Sci. 2018, 96, 3121–3130. [Google Scholar] [CrossRef] [Green Version]
- Teoh, R.; Caro, E.; Holman, D.B.; Joseph, S.; Meale, S.J.; Chaves, A.V. Effects of hardwood biochar on methane production, fermentation characteristics, and the rumen microbiota using rumen simulation. Front. Microbiol. 2019, 10, 1534. [Google Scholar] [CrossRef]
- Leng, R.A.; Preston, T.R.; Inthapanya, S. Biochar reduces enteric methane and improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and fresh cassava foliage. Livest. Res. Rural Dev. 2012, 24, 199. [Google Scholar]
- Terry, S.A.; Ribeiro, G.O.; Gruninger, R.J.; Chaves, A.V.; Beauchemin, K.A.; Okine, E.; McAllister, T.A. A pine enhanced biochar does not decrease enteric CH4 emissions, but alters the rumen microbiota. Front. Vet. Sci. 2019, 6, 308. [Google Scholar] [CrossRef] [Green Version]
- Winders, T.M.; Jolly-Breithaupt, M.L.; Wilson, H.C.; MacDonald, J.C.; Erickson, G.E.; Watson, A.K. Evaluation of the effects of biochar on diet digestibility and methane production from growing and finishing steers. Transl. Anim. Sci. 2019, 3, 775–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeRamus, H.A.; Clement, T.C.; Giampola, D.D.; Dickison, P.C. Methane emissions of beef cattle on forages: Efficiency of grazing management systems. J. Environ. Qual. 2003, 32, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannell, D.J.; Vanclay, F.M. (Eds.) Changing Land Management: Adoption of New Practices by Rural Landholders; CSIRO Publishing: Collingwood, Australia, 2011. [Google Scholar]
- Food Agriculture Organization of the United Nations. FAOSTAT Statistical Database. Available online: https://search.library.wisc.edu/catalog/999890171702121 (accessed on 8 February 2021).
- Islam, M.; Lee, S.-S. Advanced estimation and mitigation strategies: A cumulative approach to enteric methane abatement from ruminants. J. Anim. Sci. Technol. 2019, 61, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Government Clean Energy Regulator. Australian Carbon Credit Units. Available online: http://www.cleanenergyregulator.gov.au/OSR/ANREU/types-of-emissions-units/australian-carbon-credit-units (accessed on 7 February 2021).
- Commonwealth of Australia. Quarterly Update of Australia’s National Greenhouse Gas Inventory: March 2019; Department of the Environement and Energy, Online: 2019. Available online: https://www.industry.gov.au/data-and-publications/national-greenhouse-gas-inventory-march-2019 (accessed on 11 March 2021).
Methane Mitigation Strategy | Animal Methane Mitigation Potential | National Methane Mitigation Potential a | Productivity Gain | National Methane Mitigation Potential a | Proportion of Beef Herd Implicated | Expected Adoption | Benefit to Australian Industry | Time to Application |
---|---|---|---|---|---|---|---|---|
(%) | (Mt/y) | (%) | (% Total) | (%) | (%) | AUD/y | y | |
Asparagopsis | 90 | 42.91 | 20 | 66.22 | 100 | 20 | $2695.82 M | 1–5 b |
3-NOP | 40 | 4.77 | 3 | 7.36 | 100 | 5 | ** | 1–5 |
Microbe manipulation | 30 | 11.44 | 20 | 17.66 | 80 | 20 | $979.25 M | 1 |
Desmanthus | 15 | 2.86 | 15 | 4.41 | 40 | 20 | $195.79 M | Now |
Leucaena | 18 | 1.72 | 20 | 2.65 | 20 | 20 | $29.69 M | Now |
Grape marc | 10 | 0.24 | 0 | 0.37 | 2 | 50 | $12.14 M | Now |
Genetics | 7 | 0.50 | 0 | 0.77 | 100 | 3 | $4.36 M | Now |
Nitrate | 5 | 0.07 | 0 | 0.11 | 4 | 5 | −$2.61 M | Now |
Shrubs | 4 | 0.06 | 5 | 0.09 | 5 | 5 | −$566.56 M | Now |
Biserrula | 16 | 0.11 | −15 | 0.18 | 3 | 10 | −$1378.22 M | Now |
Vaccination | 5 | 0.12 | 2 | 0.18 | 100 | 0 | 0 | |
Wheat feeding dairy | 35 | 0.00 | 10 | 0 | 2 | 0 | 0 | |
Biochar | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | |
Total | 64.8 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Black, J.L.; Davison, T.M.; Box, I. Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies. Animals 2021, 11, 951. https://doi.org/10.3390/ani11040951
Black JL, Davison TM, Box I. Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies. Animals. 2021; 11(4):951. https://doi.org/10.3390/ani11040951
Chicago/Turabian StyleBlack, John L., Thomas M. Davison, and Ilona Box. 2021. "Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies" Animals 11, no. 4: 951. https://doi.org/10.3390/ani11040951