Comparison of Female Verzaschese and Camosciata delle Alpi Goats’ Hematological Parameters in The Context of Adaptation to Local Environmental Conditions in Semi-Extensive Systems in Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Conditions and Animal Selection
2.2. Collection and Analysis of Blood Samples
2.3. Data Analysis
3. Results
3.1. Hematological Parameters’ Reference Limits Related to Breed
3.2. Effects of Breed, Season, and Age on Hematological Variables
4. Discussion
4.1. Hematological Parameters’ Reference Limits Related to Breed
4.2. Comparative Hematological Changes Related to Breed, Age, and Season
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scherf, B.; Pilling, D. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO: Rome, Italy, 2015; ISBN 978-92-5-108820-3. [Google Scholar]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Pilling, D., Eds.; FAO: Rome, Italy, 2019. [Google Scholar]
- Curone, G.; Filipe, J.; Cremonesi, P.; Piccioli-Cappelli, F.; Trevisi, E.; Amadori, M. Relevance of the dairy cow biodiversity in the development of a profitable and environmentally sustainable livestock. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019, 14, 1–11. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture; Rischkowsky, B., Pilling, D., Eds.; FAO: Rome, Italy, 2007. [Google Scholar]
- Biscarini, F.; Nicolazzi, E.; Alessandra, S.; Boettcher, P.; Gandini, G. Challenges and opportunities in genetic improvement of local livestock breeds. Front. Genet. 2015, 5, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matassino, D. Recupero del genoma delle razze in via di estinzione e sviluppo ecocompatibile. In Proceedings of the National Conference “La Valorizzazione Delle Produzioni Agricole e Zootecniche Locali per la Promozione del Benessere”; L’Allevatore, Città di Castello, Italy, 22 January 2000; pp. 10–15. [Google Scholar]
- Curone, G.; Filipe, J.; Cremonesi, P.; Trevisi, E.; Amadori, M.; Pollera, C.; Castiglioni, B.; Turin, L.; Tedde, V.; Vigo, D.; et al. What we have lost: Mastitis resistance in Holstein Friesians and in a local cattle breed. Res. Vet. Sci. 2018, 116, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Agradi, S.; Curone, G.; Negroni, D.; Vigo, D.; Brecchia, G.; Bronzo, V.; Panseri, S.; Chiesa, L.M.; Peric, T.; Danes, D.; et al. Determination of fatty acids profile in original brown cows dairy products and relationship with alpine pasture farming system. Animals 2020, 10, 1231. [Google Scholar] [CrossRef]
- FAO. Domestic Animal Diversity Information System (DAD-IS). Available online: http://www.fao.org/dad-is/en/ (accessed on 1 February 2022).
- Currò, S.; Manuelian, C.L.; De Marchi, M.; De Palo, P.; Claps, S.; Maggiolino, A.; Campanile, G.; Rufrano, D.; Fontana, A.; Pedota, G.; et al. Autochthonous dairy goat breeds showed better milk quality than Saanen under the same environmental conditions. Arch. Anim. Breed. 2019, 62, 83–89. [Google Scholar] [CrossRef]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Pira, E.; Bittante, G.; Pazzola, M. Milk yield, quality, and coagulation properties of 6 breeds of goats: Environmental and individual variability. J. Dairy Sci. 2018, 101, 7236–7247. [Google Scholar] [CrossRef]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Summer, A.; Cipolat-Gotet, C.; Bittante, G.; Pazzola, M. Cheese yield, cheesemaking efficiency, and daily production of 6 breeds of goats. J. Dairy Sci. 2018, 101, 7817–7832. [Google Scholar] [CrossRef]
- Currò, S.; Manuelian, C.L.; De Marchi, M.; Goi, A.; Claps, S.; Esposito, L.; Neglia, G. Italian local goat breeds have better milk coagulation properties than cosmopolitan breed. Ital. J. Anim. Sci. 2020, 19, 593–601. [Google Scholar] [CrossRef]
- Di Trana, A.; Sepe, L.; Di Gregorio, P.; Di Napoli, M.A.; Giorgio, D.; Caputo, A.R.; Claps, S. The role of local sheep and goat breeds and their products as a tool for sustainability and safeguard of the mediterranean environment. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; Springer International Publishing: Cham, Switzerland, 2015; pp. 77–112. ISBN 9783319163574. [Google Scholar]
- Ajmone-Marsan, P.; Negrini, R.; Crepaldi, P.; Milanesi, E.; Gorni, C.; Valentini, A.; Cicogna, M. Assessing genetic diversity in Italian goat populations using AFLP® markers. Anim. Genet. 2001, 32, 281–288. [Google Scholar] [CrossRef]
- De Haan, C.; Steinfeld, H.; Blackburn, H. Livestock and the environment: Finding a balance. In Proceedings of the Directorate General for Development, Commission of the European Community, Brussels, Belgium, 1 January 1997; p. 115. [Google Scholar]
- Battaglini, L.; Bovolenta, S.; Gusmeroli, F.; Salvador, S.; Sturaro, E. Environmental sustainability of Alpine livestock farms. Ital. J. Anim. Sci. 2014, 13, 431–443. [Google Scholar] [CrossRef]
- Zanzani, S.A.; Gazzonis, A.L.; Olivieri, E.; Villa, L.; Fraquelli, C.; Manfredi, M.T. Gastrointestinal nematodes of goats: Host–parasite relationship differences in breeds at summer mountain pasture in northern Italy. J. Vet. Res. 2019, 63, 519–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, E.G.; Zanzani, S.A.; Gazzonis, A.L.; Zanatta, G.; Bruni, G.; Villa, M.; Rizzi, R.; Manfredi, M.T. Effects of gastrointestinal infections caused by nematodes on milk production in goats in a mountain ecosystem: Comparison between a cosmopolite and a local breed. Small Rumin. Res. 2014, 120, 155–163. [Google Scholar] [CrossRef]
- Saddiqi, H.A.; Jabbar, A. Small ruminant resistance against gastrointestinal nematodes: A case of Haemonchus contortus. Parasitol. Res. 2011, 109, 1483–1500. [Google Scholar] [CrossRef] [PubMed]
- Njidda, A.A. Haematological and biochemical parameters of goats of semi arid environment fed on natural grazing rangeland of northern Nigeria. IOSR J. Agric. Vet. Sci. 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Tibbo, M.; Jibril, Y.; Woldemeskel, M.; Dawo, F.; Aragaw, K.; Rege, J.E.O. Factors Affecting Hematological Profiles in Three Ethiopian indigenous goat breeds. J. Appl. Res. Vet. Med. 2004, 2, 297–309. [Google Scholar] [CrossRef]
- Mohammed Muayad, T.A.; Haniza, M.Z.H.; Husni, I.; Tawang, A. Haematological values of apparently healthy indigenous goats in Malaysia: A comparative study. Indian J. Anim. Res. 2018, 52, 1701–1704. [Google Scholar] [CrossRef]
- Osman, I.N.E.H.; Al-Busaidi, R.M.; Johnson, E.H. Effects of Age, Breed and Sex on Haematological Parameters of Growing Omani Goat Breeds. Sultan Qaboos Univ. J. Sci. [SQUJS] 2016, 21, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Shaikat, A.H.; Hassan, M.M.; Khan, S.A.; Islam, M.N.; Hoque, M.A.; Bari, M.S.; Hossain, M.E. Haemato-biochemical profiles of indigenous goats (Capra hircus) at Chittagong, Bangladesh. Vet. World 2013, 6, 789–793. [Google Scholar] [CrossRef]
- Al-Bulushi, S.; Shawaf, T.; Al-Hasani, A. Some hematological and biochemical parameters of different goat breeds in Sultanate of Oman “A preliminary study”. Vet. World 2017, 10, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Castagna, F.; Britti, D.; Russo, S.; Ceniti, C.; Poerio, A.; Loprete, G.; Lopreiato, V.; De Nardo, F.; Consolo, G.; Musella, V. Evaluation of haematological profile in Nicastrese goats infested with helminths bred in a wild state in Calabria region (southern Italy). Large Anim. Rev. 2017, 23, 143–146. [Google Scholar]
- Zumbo, A.; Sciano, S.; Messina, V.; Casella, S.; di Rosa, A.R.; Piccione, G. Haematological profile of messinese goat kids and their dams during the first month post-partum. Anim. Sci. Pap. Rep. 2011, 29, 223–230. [Google Scholar]
- Piccione, G.; Monteverde, V.; Rizzo, M.; Vazzana, I.; Assenza, A.; Zumbo, A.; Niutta, P.P. Reference intervals of some electrophoretic and haematological parameters in Italian goats: Comparison between Girgentana and Aspromontana breeds. J. Appl. Anim. Res. 2014, 42, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Arfuso, F.; Fazio, F.; Rizzo, M.; Marafioti, S.; Zanghì, E.; Piccione, G. Factors affecting the hematological parameters in different goat breeds from Italy. Ann. Anim. Sci. 2016, 16, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Antunović, Z.; Novaković, K.; Klir, Ž.; Šerić, V.; Mioč, B.; Šperanda, M.; Ronta, M.; Novoselec, J. Blood metabolic profile and acid-base status of istrian goats-A critically endangered croatian goat-in relation to age. Vet. Arh. 2020, 90, 27–38. [Google Scholar] [CrossRef]
- Ramprabhu, R.; Chellapandian, M.; Balachandran, S.; Rajeswar, J. Influence of age and sex on blood parameters of Kanni goats in Tamil Nadu. Indian J. Small Rumin. 2010, 16, 249–251. [Google Scholar]
- Azab, M.E.; Abdel-Maksoud, H.A. Changes in some hematological and biochemical parameters during prepartum and postpartum periods in female Baladi goats. Small Rumin. Res. 1999, 34, 77–85. [Google Scholar] [CrossRef]
- Waziri, M.A.; Ribad, A.Y.; Sivachelvan, N. Changes in the serum proteins, hematological and some serum biochemical profifi les in the gestation period in the Sahel goats. Vet. Arh. 2010, 80, 215–224. [Google Scholar]
- Mbassa, G.K.; Poulsen, J.S.D. Influence of pregnancy, lactation and environment on haematological profiles in Danish Landrance dairy goats (Capra hircus) of different parity. Comp. Biochem. Physiol. 1991, 100, 403–412. [Google Scholar] [CrossRef]
- Habibu, B.; Makun, H.J.; Yaqub, L.S.; Buhari, H.U.; Aluwong, T.; Kawu, M.U. Comparative evaluation of haematological parameters and erythrocyte membrane stability in pregnant and lactating goats in different seasons of tropical Savannah. Theriogenology 2017, 99, 30–35. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Ibrahim, M.Y.; Hassan, Y.Y. Seasonal variation in erythrocytic and leukocytic indices and serum proteins of female Nubian goats. Middle-East J. Sci. Res. 2009, 4, 168–174. [Google Scholar]
- Ghosh, S.; Singh, A.K.; Haldar, C. Adaptive and ecological significance of the seasonal changes in hematological, biochemical and hormonal parameters in the tropical goat Capra hircus. J. Endocrinol. Reprod. 2014, 17, 113–122. [Google Scholar]
- Ribeiro, M.N.; Ribeiro, N.L.; Bozzi, R.; Costa, R.G. Physiological and biochemical blood variables of goats subjected to heat stress–A review. J. Appl. Anim. Res. 2018, 46, 1036–1041. [Google Scholar] [CrossRef] [Green Version]
- Perumal, P.; De, A.K.; Bhattacharya, D.; Sunder, J.; Bhowmick, S.; Kundu, A.; Muniswamy, K. Walking and Dry Season Stresses Modulates the Physiological, Heamatological and Biochemical Profiles of Indigenous Local Goats in Andaman and Nicobar Islands. Int. J. Bio-Resour. Stress Manag. 2019, 10, 597–605. [Google Scholar] [CrossRef]
- Olayemi, F.O.; Oboye, O.O.; Azeez, I.O.; Oyagbemi, A.A.; Soetan, K.O. Influence of management systems and sex on haematology of West African dwarf goat. Afr. J. Agric. Res. 2009, 4, 1199–1202. [Google Scholar]
- Solaiman, S.G.; Gurung, N.K.; McCrary, Q.; Goyal, H.; McElhenney, W.H. Feeding performance and blood parameters of male goat kids fed EasiFlo® cottonseed. Small Rumin. Res. 2009, 81, 137–145. [Google Scholar] [CrossRef]
- Sulaiman, E.G.; Arslan, S.H.; Al-Obaidi, Q.T.; Daham, E. Clinical, haematological and biochemical studies of babesiosis in native goats in Mosul. Iraqi J. Vet. Sci. 2010, 24, 31–35. [Google Scholar] [CrossRef]
- Zaki, M.S.; Ata, N.S.; Shalaby, S.I.; Zytoun, I.M. Diarrhoea in neonatal baraki kids-goats. Life Sci. J. 2010, 7, 93–97. [Google Scholar]
- Akinrinmade, J.F.; Akinrinde, A.S. Hematological and serum biochemical indices of West African dwarf goats with foreign body rumen impaction. Niger. J. Physiol. Sci. 2012, 27, 83–87. [Google Scholar] [PubMed]
- Hristov, K.J.; Pepovich, R.; Stoimenov, G.; Stamberov, P. Hematological Changes Associated With Subclinical Mastitis in Goats. Sci. Work. Ser. C. Vet. Med. 2018, LXIV, 38–41. [Google Scholar]
- Antunović, Z.; Novoselec, J.; Klir, Ž.; Didara, M. Hematological parameters in the alpine goats during lactation. Poljoprivreda 2013, 19, 40–43. [Google Scholar]
- Maggioni, L.; Mondellini, N.; Corti, M. Utilizzazione di formazioni vegetali miste nelle Prealpi lombarde occidentali mediante circuiti di pascolo con capre da latte. Quad. SoZooAlp. Il Sist. Delle Malghe Alp. Aspetti Agro-Zootec. Paesaggistici E Turistici. 2004, 1, 139–147. [Google Scholar]
- Agradi, S.; Gazzonis, A.L.; Curone, G.; Faustini, M.; Draghi, S.; Brecchia, G.; Vigo, D.; Manfredi, M.T.; Zanzani, S.A.; Pulinas, L.; et al. Lactation Characteristics in Alpine and Nera di Verzasca Goats in Northern Italy: A Statistical Bayesian Approach. Appl. Sci. 2021, 11, 7235. [Google Scholar] [CrossRef]
- Zanzani, S.A.; Gazzonis, A.L.; Alberti, E.; Neilly, T.M.; Villa, L.; Manfredi, M.T. Gastrointestinal nematode infections in goats: Differences between strongyle faecal egg counts and specific antibody responses to Teladorsagia circumcincta in Nera di Verzasca and Alpine goats. Parasitol. Res. 2020, 119, 2539–2548. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Schalm, O.W.; Jain, N.C.; Carrol, E.J. Schalm’s Veterinary Hematology, 4th ed.; Lea and Febiger: Philadelphia, PA, USA, 1986. [Google Scholar]
- Jones, M.L.; Allison, R.W. Evaluation of the Ruminant Complete Blood Cell Count. Vet. Clin. N. Am.: Food Anim. Pract. 2007, 23, 377–402. [Google Scholar] [CrossRef]
- Pugh, D.G.; Baird, A.N. Sheep and Goat Medicine; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9781437723533. [Google Scholar]
- Matthews, J. Diseases of the Goat; Pub, B., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; ISBN 9781119073543. [Google Scholar]
- Smith, M.C.; Sherman, D.M. Goat Medicine; Wiley-Blackwell: Hoboken, NJ, USA, 2009; ISBN 9780781796439. [Google Scholar]
- Piedrafita, D.; Raadsma, H.W.; Gonzalez, J.; Meeusen, E. Increased production through parasite control: Can ancient breeds of sheep teach us new lessons? Trends Parasitol. 2010, 26, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.L.; Mwamachi, D.M.; Audho, J.O.; Aduda, E.O.; Thorpe, W. Resistance of Galla and Small East African goats in the sub-humid tropics to gastrointestinal nematode infections and the peri-parturient rise in faecal egg counts. Vet. Parasitol. 1998, 79, 53–64. [Google Scholar] [CrossRef]
- Taberlet, P.; Valentini, A.; Rezaei, H.R.; Naderi, S.; Pompanon, F.; Negrini, R.; Ajmone-Marsan, P. Are cattle, sheep, and goats endangered species? Mol. Ecol. 2008, 17, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Righi, C.; Menchetti, L.; Orlandi, R.; Moscati, L.; Mancini, S.; Diverio, S. Welfare Assessment in Shelter Dogs by Using Physiological and Immunological Parameters. Animals 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Egbe-Nwiyi, T.; Nwaosu, S.C.; Salami, H.A. Haematological values of apparently healthy sheep and goats as influenced by age and sex in arid zone of Nigeria. Afr. J. Biomed. Res 2000, 3, 109–115. [Google Scholar]
- Antunović, Z.; Marić, I.; Klir, E.; Šerić, V.; Mioč, B.; Novoselec, J. Haemato-biochemical profile and acid-base status of Croatian spotted goats of different ages. Arch. Anim. Breed. 2019, 62, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daramola, J.O.; Adeloye, A.A.; Fatoba, T.A.; Soladoye, A.O. Haematological and biochemical parameters of West African Dwarf goats. Livest. Res. Rural Dev. 2005, 17, 95. [Google Scholar]
- Li, J.; Chen, Q.; Luo, X.; Hong, J.; Pan, K.; Lin, X.; Liu, X.; Zhou, L.; Wang, H.; Xu, Y.; et al. Neutrophil-to-Lymphocyte Ratio Positively Correlates to Age in Healthy Population. J. Clin. Lab. Anal. 2015, 443, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Coop, R.L.; Wall, R.L. Veterinary Parasitology; John Wiley & Sons, Blackwell Publishing: Hoboken, NJ, USA, 2013. [Google Scholar]
- Smith, B.P. Large Animal Internal Medicine, 5th ed.; Elsevier: St. Louis, MO, USA, 2015; ISBN 978-0-323-08839-8. [Google Scholar]
- Ghosh, S.; Singh, A.K.; Haldar, C. Seasonal modulation of immunity by melatonin and gonadal steroids in a short day breeder goat Capra hircus. Theriogenology 2014, 82, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Alila-Johansson, A.; Eriksson, L.; Soveri, T.; Laakso, M.L. Seasonal variation in endogenous serum melatonin profiles in goats: A difference between spring and fall? J. Biol. Rhythms 2001, 16, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Todini, L.; Terzano, G.M.; Borghese, A.; Debenedetti, A.; Malfatti, A. Plasma melatonin in domestic female Mediterranean sheep (Comisana breed) and goats (Maltese and Red Syrian). Res. Vet. Sci. 2011, 90, 35–39. [Google Scholar] [CrossRef] [PubMed]
Parameter | Descriptive Statistics | Reference Limits (90% CI) | Biological Variation | |||||
---|---|---|---|---|---|---|---|---|
Q1 | Mdn | Q3 | Mean | Lower | Upper | Intra-Individual CV (%) | Inter-Individual CV (%) | |
RBC (M/µL) | 12.30 | 13.13 | 13.77 | 12.92 | 10.40 (9.87–1.41) | 14.89 (14.28–5.04) | 11 | 9 |
HGB (g/dL) | 8.21 | 8.59 | 9.19 | 8.61 | 6.30 (5.96–7.74) | 10.55 (9.52–10.84) | 11 | 11 |
PCV (%) | 24.10 | 24.96 | 26.62 | 25.15 | 20.50 (18.84–23.51) | 28.67 (27.43–28.79) | 10 | 8 |
MCV (fL) | 18.77 | 19.50 | 20.61 | 19.67 | 17.11 (17.02–17.92) | 21.87 (21.49–21.94) | 7 | 7 |
MCH (pg) | 6.53 | 6.64 | 6.90 | 6.68 | 6.30 (6.28–6.42) | 7.14 (6.96–7.17) | 6 | 3 |
MCHC (g/dL) | 32.64 | 34.04 | 35.33 | 34.23 | 31.29 (31.02–31.96) | 38.46 (37.22–38.75) | 6 | 6 |
RDW (%) | 30.15 | 33.06 | 34.87 | 32.65 | 27.10 (26.56–28.58) | 36.85 (36.03–36.85) | 10 | 9 |
WBC (K/µL) | 7.48 | 8.81 | 9.84 | 8.66 | 4.45 (4.23–6.10) | 11.97 (10.89–12.36) | 29 | 23 |
NEU (K/µL) | 2.25 | 3.18 | 3.84 | 3.12 | 1.62 (1.51–1.95) | 5.11 (4.19–5.70) | 51 | 32 |
LYMPH (K/µL) | 3.28 | 4.11 | 6.13 | 4.62 | 2.12 (1.63–2.75) | 7.86 (6.76–8.98) | 31 | 37 |
MONO (K/µL) | 0.27 | 0.37 | 0.46 | 0.38 | 0.21 (0.21–0.24) | 0.70 (0.55-0.74) | 54 | 35 |
EOS (K/µL) | 0.15 | 0.18 | 0.29 | 0.22 | 0.09 (0.08–0.11) | 0.45 (0.34-0.52) | 74 | 46 |
BAS (K/µL) | 0.05 | 0.07 | 0.08 | 0.07 | 0.02 (0.02–0.04) | 0.12 (0.10–0.13) | 64 | 37 |
NEU fraction (%) | 28.38 | 36.56 | 44.02 | 36.91 | 18.65 (18.06–23.60) | 59.83 (48.38–67.22) | 36 | 30 |
LYMPH fraction (%) | 45.88 | 54.86 | 61.00 | 53.47 | 29.58 (25.84–39.62) | 75.74 (67.74–77.76) | 24 | 22 |
MONO fraction (%) | 3.77 | 4.94 | 6.11 | 5.06 | 2.29 (2.04–3.27) | 8.54 (7.16–9.17) | 63 | 33 |
EOS fraction (%) | 1.74 | 2.69 | 3.36 | 2.91 | 1.08 (0.98–1.35) | 6.96 (4.60–7.52) | 77 | 53 |
BAS fraction (%) | 0.60 | 0.75 | 1.08 | 0.86 | 0.36 (0.34–0.45) | 1.56 (1.33–1.67) | 66 | 41 |
N/L | 0.51 | 0.77 | 1.03 | 0.81 | 0.27 (0.24–0.38) | 1.63 (1.29–1.82) | 56 | 47 |
Parameter | Descriptive Statistics | Reference Limits (90% CI) | Biological Variation | |||||
---|---|---|---|---|---|---|---|---|
Q1 | Mdn | Q3 | Mean | Lower | Upper | Intra-Individual CV (%) | Inter-Individual CV (%) | |
RBC (M/µL) | 14.07 | 14.42 | 14.93 | 14.30 | 11.99 (11.87–3.08) | 15.78 (15.21–5.81) | 7 | 7 |
HGB (g/dL) | 9.31 | 9.67 | 10.14 | 9.61 | 7.80 (7.51–8.86) | 11.03 (10.45–11.23) | 7 | 8 |
PCV (%) | 26.13 | 27.10 | 28.21 | 27.18 | 23.71 (22.93–25.29) | 30.78 (29.69–30.95) | 8 | 7 |
MCV (fL) | 18.25 | 18.99 | 19.68 | 19.09 | 17.67 (17.57–17.92) | 21.54 (20.52–21.75) | 7 | 6 |
MCH (pg) | 6.59 | 6.70 | 6.87 | 6.72 | 6.36 (6.35–6.46) | 7.07 (6.98–7.09) | 6 | 3 |
MCHC (g/dL) | 34.64 | 35.43 | 36.91 | 35.47 | 32.46 (32.02–33.09) | 38.38 (37.45–38.83) | 7 | 5 |
RDW (%) | 32.51 | 36.05 | 36.93 | 34.76 | 28.63 (28.47–30.22) | 38.52 (37.43–38.82) | 9 | 9 |
WBC (K/µL) | 4.93 | 5.53 | 7.18 | 5.90 | 3.40 (3.19–4.25) | 9.15 (7.89–9.54) | 27 | 27 |
NEU (K/µL) | 1.26 | 1.76 | 2.11 | 1.77 | 0.87 (0.87–1.02) | 2.85 (2.45–3.19) | 46 | 33 |
LYMPH (K/µL) | 2.72 | 3.50 | 4.35 | 3.57 | 1.80 (1.79–2.20) | 5.45 (5.12–5.58) | 32 | 31 |
MONO (K/µL) | 0.22 | 0.28 | 0.32 | 0.28 | 0.17 (0.16–0.18) | 0.40 (0.37–0.41) | 55 | 25 |
EOS (K/µL) | 0.08 | 0.16 | 0.21 | 0.17 | 0.05 (0.05–0.06) | 0.42 (0.26–0.51) | 72 | 60 |
BAS (K/µL) | 0.04 | 0.05 | 0.06 | 0.05 | 0.03 (0.02–0.03) | 0.10 (0.08–0.10) | 68 | 34 |
NEU fraction (%) | 24.18 | 31.41 | 35.28 | 30.13 | 16.87 (16.73–20.04) | 45.85 (37.78–49.30) | 34 | 25 |
LYMPH fraction (%) | 55.55 | 59.30 | 67.87 | 60.42 | 44.26 (43.21–49.15) | 74.65 (71.86–74.81) | 18 | 14 |
MONO fraction (%) | 4.18 | 4.94 | 5.65 | 4.91 | 2.99 (2.85–3.43) | 7.11 (6.13–7.59) | 57 | 23 |
EOS fraction (%) | 1.75 | 2.68 | 3.98 | 2.94 | 1.12 (1.02–1.35) | 6.85 (4.38–9.51) | 77 | 57 |
BAS fraction (%) | 0.68 | 0.86 | 1.12 | 0.93 | 0.49 (0.49–0.58) | 1.61 (1.33–1.70) | 63 | 33 |
N/L | 0.38 | 0.59 | 0.71 | 0.57 | 0.24 (0.23–0.31) | 1.03 (0.85–1.24) | 52 | 40 |
Variable | Breed Effect | Season Effect | Age Effect | |
---|---|---|---|---|
p-Value | p-Value | b ± Standard Error | p-Value | |
RBC (M/µL) | <0.001 | <0.001 | −0.24 ± 0.05 | <0.001 |
HGB (g/dL) | <0.001 | <0.001 | −0.17 ± 0.04 | <0.001 |
PCV (%) | <0.001 | <0.001 | −0.23 ± 0.12 | 0.058 |
MCV (fL) | 0.024 | <0.001 | 0.20 ± 0.07 | 0.004 |
MCH (pg) | 0.549 | <0.001 | −0.01 ± 0.01 | 0.878 |
MCHC (g/dL) | 0.001 | <0.001 | −0.35 ± 0.09 | <0.001 |
RDW (%) | <0.001 | <0.001 | −0.64 ± 0.14 | <0.001 |
WBC (K/µL) | <0.001 | <0.001 | −0.35 ± 0.08 | <0.001 |
NEU (K/µL) | <0.001 | <0.001 | 0.04 ± 0.04 | 0.376 |
LYMPH (K/µL) | 0.049 | <0.001 | −0.40 ± 0.07 | <0.001 |
MONO (K/µL) | <0.001 | 0.170 | −0.01 ± 0.01 | 0.411 |
EOS (K/µL) | 0.096 | <0.001 | −0.01±0.01 | 0.107 |
BAS (K/µL) | 0.001 | 0.008 | −0.01 ± 0.01 | 0.969 |
NEU fraction (%) | <0.001 | <0.001 | 2.13 ± 0.44 | <0.001 |
LYMPH fraction (%) | <0.001 | <0.001 | −2.34 ± 0.50 | <0.001 |
MONO fraction (%) | 0.300 | <0.001 | 0.13 ± 0.07 | 0.093 |
EOS fraction (%) | 0.987 | <0.001 | 0.02 ± 0.08 | 0.779 |
BAS fraction (%) | 0.855 | 0.005 | 0.04 ± 0.17 | 0.014 |
N/L | <0.001 | <0.001 | 0.06 ± 0.01 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agradi, S.; Menchetti, L.; Curone, G.; Faustini, M.; Vigo, D.; Villa, L.; Zanzani, S.A.; Postoli, R.; Kika, T.S.; Riva, F.; et al. Comparison of Female Verzaschese and Camosciata delle Alpi Goats’ Hematological Parameters in The Context of Adaptation to Local Environmental Conditions in Semi-Extensive Systems in Italy. Animals 2022, 12, 1703. https://doi.org/10.3390/ani12131703
Agradi S, Menchetti L, Curone G, Faustini M, Vigo D, Villa L, Zanzani SA, Postoli R, Kika TS, Riva F, et al. Comparison of Female Verzaschese and Camosciata delle Alpi Goats’ Hematological Parameters in The Context of Adaptation to Local Environmental Conditions in Semi-Extensive Systems in Italy. Animals. 2022; 12(13):1703. https://doi.org/10.3390/ani12131703
Chicago/Turabian StyleAgradi, Stella, Laura Menchetti, Giulio Curone, Massimo Faustini, Daniele Vigo, Luca Villa, Sergio Aurelio Zanzani, Rezart Postoli, Tana Shtylla Kika, Federica Riva, and et al. 2022. "Comparison of Female Verzaschese and Camosciata delle Alpi Goats’ Hematological Parameters in The Context of Adaptation to Local Environmental Conditions in Semi-Extensive Systems in Italy" Animals 12, no. 13: 1703. https://doi.org/10.3390/ani12131703