Hypocholesterolemic, Antioxidative, and Anti-Inflammatory Effects of Dietary Spirulina platensisis Supplementation on Laying Hens Exposed to Cyclic Heat Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. SP-Microalgea Analysis
2.2. Birds and Management
2.3. Experimental Design and Sample Collection
2.4. Cholesterol Profile
2.5. Redox Status Analysis
2.5.1. Plasma CP assay
2.5.2. Plasma MDA Assay
2.5.3. Plasma TAOC Assay
2.5.4. Plasma GSH Assay
2.6. Inflammatory Cytokine Analysis
2.7. Statistical Analysis
3. Results
3.1. Cholesterol Profile
3.2. Redox Status
3.3. Inflammatory Cytokines
3.4. Layer Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mignon-Grasteau, S.; Moreri, U.; Narcy, A.; Rousseau, X.; Rodenburg, B.; Tixier-Boichard, M.; Zerjal, T. Robustness to chronic heat stress in laying hens: A meta-analysis. Poult. Sci. 2015, 94, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-M.; Liu, L.-P.; Yin, B.; Liu, Y.-Y.; Dong, W.-W.; Gong, S.; Zhang, J.; Tan, J.-H. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poult. Sci. 2020, 99, 6084–6093. [Google Scholar] [CrossRef] [PubMed]
- Muchacka, R.; Sosnówka-Czajka, E.; Skomorucha, I.; Kapusta, E.; Greń, A. The Activity of Antioxidant Enzymes in Blood Plasma and Eggs of Laying Hens Kept in Various Rearing Systems during the Summer Heat Period. Eur. Poult. Sci. 2018, 82, 1–16. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Dong, X.F.; Tong, J.M.; Zhang, Q. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult. Sci. 2012, 91, 575–582. [Google Scholar] [CrossRef]
- El-Hack, M.E.A.; Mahrose, K.; Arif, M.; Chaudhry, M.T.; Saadeldin, I.M.; Saeed, M.; Soomro, R.N.; Abbasi, I.H.R.; Rehman, Z.U. Alleviating the environmental heat burden on laying hens by feeding on diets enriched with certain antioxidants (vitamin E and selenium) individually or combined. Environ. Sci. Pollut. Res. 2017, 24, 10708–10717. [Google Scholar] [CrossRef]
- El-Hack, M.E.A.; Mahrose, K.M.; Askar, A.A.; Alagawany, M.; Arif, M.; Saeed, M.; Abbasi, F.; Soomro, R.N.; Siyal, F.A.; Chaudhry, M.T. Single and Combined Impacts of Vitamin A and Selenium in Diet on Productive Performance, Egg Quality, and Some Blood Parameters of Laying Hens During Hot Season. Biol. Trace Element Res. 2016, 177, 169–179. [Google Scholar] [CrossRef]
- Hafeez, A.; Akram, W.; Sultan, A.; Konca, Y.; Ayasan, T.; Naz, S.; Shahzada, W.; Khan, R.U. Effect of dietary inclusion of taurine on performance, carcass characteristics and muscle micro-measurements in broilers under cyclic heat stress. Ital. J. Anim. Sci. 2021, 20, 872–877. [Google Scholar] [CrossRef]
- He, S.; Arowolo, M.; Medrano, R.; Li, S.; Yu, Q.; Chen, J.; He, J. Impact of heat stress and nutritional interventions on poultry production. World Poult. Sci. J. 2018, 74, 647–664. [Google Scholar] [CrossRef]
- Sahin, N.; Akdemir, F.; Tuzcu, M.; Hayirli, A.; Smith, M.; Sahin, K. Effects of supplemental chromium sources and levels on performance, lipid peroxidation and proinflammatory markers in heat-stressed quails. Anim. Feed Sci. Technol. 2010, 159, 143–149. [Google Scholar] [CrossRef]
- Habashy, W.S.; Milfort, M.C.; Rekaya, R.; Aggrey, S.E. Cellular antioxidant enzyme activity and biomarkers for oxidative stress are affected by heat stress. Int. J. Biometeorol. 2019, 63, 1569–1584. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.O.; Alaqil, A.A.; Mehaisen, G.M.K.; El Sabry, M.I. Effect of Organic Selenium-Enriched Yeast on Relieving the Deterioration of Layer Performance, Immune Function, and Physiological Indicators Induced by Heat Stress. Front. Vet. Sci. 2022, 9, 1–11. [Google Scholar] [CrossRef]
- Sohail, M.U.; Ijaz, A.; Yousaf, M.S.; Ashraf, K.; Zaneb, H.; Aleem, M.; Rehman, H. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult. Sci. 2010, 89, 1934–1938. [Google Scholar] [CrossRef] [PubMed]
- Flees, J.; Rajaei-Sharifabadi, H.; Greene, E.; Beer, L.; Hargis, B.M.; Ellestad, L.; Porter, T.; Donoghue, A.; Bottje, W.G.; Dridi, S. Effect of Morinda citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens. Front. Physiol. 2017, 8, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; He, X.F.; Ma, B.B.; Zhang, L.; Li, J.L.; Jiang, Y.; Zhou, G.H.; Gao, F. Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poult. Sci. 2019, 98, 3695–3704. [Google Scholar] [CrossRef] [PubMed]
- Emami, N.K.; Jung, U.; Voy, B.; Dridi, S. Radical Response: Effects of Heat Stress-Induced Oxidative Stress on Lipid Metabolism in the Avian Liver. Antioxidants 2021, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Rizk, Y.S.; Ibrahim, A.F.; Mansour, M.K.; Mohamed, H.S.; El-Slamony, A.E.; Soliman, A.A.M. Effect of Dietary Source of Selenium on Productive and Reproductive Performance of Sinai Laying Hens Under Heat Stress Conditions. Poult. Sci. 2017, 37, 461–489. [Google Scholar]
- Borzouie, S.; Rathgeber, B.M.; Stupart, C.M.; MacIsaac, J.; MacLaren, L.A. Effects of Dietary Inclusion of Seaweed, Heat Stress and Genetic Strain on Performance, Plasma Biochemical and Hematological Parameters in Laying Hens. Animals 2020, 10, 1570. [Google Scholar] [CrossRef]
- Attia, Y.A.; El-Hamid, A.E.-H.E.A.; Abedalla, A.A.; Berika, M.A.; Al-Harthi, M.A.; Kucuk, O.; Sahin, K.; Abou-Shehema, B.M. Laying performance, digestibility and plasma hormones in laying hens exposed to chronic heat stress as affected by betaine, vitamin C, and/or vitamin E supplementation. SpringerPlus 2016, 5, 1619. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Lu, L.; Li, S.; Liu, S.; Zhang, L.; Wang, G.; Li, A.; Luo, X. Effects of Selenium Source and Level on Growth Performance, Tissue Selenium Concentrations, Antioxidation, and Immune Functions of Heat-Stressed Broilers. Biol. Trace Element Res. 2012, 150, 158–165. [Google Scholar] [CrossRef]
- Mujahid, A.; Akiba, Y.; Toyomizu, M. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. Am. J. Physiol. Integr. Comp. Physiol. 2009, 297, R690–R698. [Google Scholar] [CrossRef]
- Jahanian, R.; Rasouli, E. Dietary chromium methionine supplementation could alleviate immunosuppressive effects of heat stress in broiler chicks1. J. Anim. Sci. 2015, 93, 3355–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiharto, S. Alleviation of heat stress in broiler chicken using turmeric (Curcuma longa)—A short review. J. Anim. Behav. Biometeorol. 2020, 8, 215–222. [Google Scholar] [CrossRef]
- Alzarah, M.; Althobiati, F.; Abbas, A.; Mehaisen, G.; Kamel, N. Citrullus colocynthis Seeds: A Potential Natural Immune Modulator Source for Broiler Reared under Chronic Heat Stress. Animals 2021, 11, 1951. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.; Soliman, E.; Hamad, R.; El-Borady, O.; Ali, A.; Helal, M. Selenium and nano-selenium ameliorations in two breeds of broiler chickens exposed to heat stress. S. Afr. J. Anim. Sci. 2020, 50, 215–232. [Google Scholar] [CrossRef]
- Ghazi, S.; Habibian, M.; Moeini, M.M.; Abdolmohammadi, A.R. Effects of Different Levels of Organic and Inorganic Chromium on Growth Performance and Immunocompetence of Broilers under Heat Stress. Biol. Trace Element Res. 2011, 146, 309–317. [Google Scholar] [CrossRef]
- Mahmoud, U.T.; Fahmey, M.R.; Abdel-rahman, M.A.; Darwish, M.H.A. Effect of Propolis Supplementation on Serum Calcium, Phosphorus and Proteins Concentrations in Heat Stressed Broilers. J. Adv. Vet. Res. 2014, 4, 117–122. [Google Scholar]
- Akdemir, F.; Sahin, N.; Orhan, C.; Tuzcu, M.; Sahin, K.; Hayirli, A. Chromium-histidinate ameliorates productivity in heat-stressed Japanese quails through reducing oxidative stress and inhibiting heat-shock protein expression. Br. Poult. Sci. 2015, 56, 247–254. [Google Scholar] [CrossRef]
- Mehaisen, G.M.K.; Ibrahim, R.M.; Desoky, A.A.; Safaa, H.; El-Sayed, O.A.; Abass, A.O. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks. PLoS ONE 2017, 12, e0186907. [Google Scholar] [CrossRef] [Green Version]
- Mehaisen, G.M.K.; Desoky, A.A.; Sakr, O.G.; Sallam, W.; Abass, A.O. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail. PLoS ONE 2019, 14, e0214839. [Google Scholar] [CrossRef] [Green Version]
- Caurez, C.L.; Olo, C.F. Laying Performance of Japanese Quail (Coturnix Coturnix Japonica) Supplemented with Zinc, Vitamin C and E Subjected to Long Term Heat Stress. In Proceedings of the International Conference on Agriculture and Biotechnology, Stockholm, Sweden, 15–16 July 2013; Volume 12, pp. 58–63. [Google Scholar]
- Anvar, A.A.; Nowruzi, B. Bioactive Properties of Spirulina: A Review. Microb. Bioact. 2021, 4, 134–142. [Google Scholar] [CrossRef]
- Mohan, A.; Misra, N.; Srivastav, D.; Umapathy, D.; Kumar, S. Spirulina-The Nature’s Wonder: A Review. Sch. J. Appl. Med. Sci. SJAMS 2014, 2, 1334–1339. [Google Scholar]
- Shokri, H.; Khosravi, A.; Taghavi, M. Efficacy of Spirulina Platensis on Immune Functions in Cancer Mice with Systemic Candidiasis. J. Mycol. Res. 2014, 1, 7–13. [Google Scholar]
- Şahan, A. Determination of Some Haematological and Non-Specific Immune Parameters in Nile Tilapia (Oreochromis niloticus L., 1758) Fed with Spirulina (Spirulina platensis) Added Diets. J. Aquac. Eng. Fish. Res. 2015, 1, 133–139. [Google Scholar] [CrossRef]
- Ismail, M.; Ali, D.A.; Fernando, A.; Abdraboh, M.E.; Gaur, R.L.; Ibrahim, W.M.; Raj, M.H.G.; Ouhtit, A. Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina. Int. J. Biol. Sci. 2009, 5, 377–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coskun, Z.K.; Kerem, M.; Gurbuz, N.; Omeroglu, S.; Pasaoglu, H.; Demirtas, C.; Lortlar, N.; Salman, B.; Pasaoglu, O.T.; Turgut, H.B. The study of biochemical and histopathological effects of spirulina in rats with TNBS-induced colitis. Bratisl Lek List. 2011, 112, 235–243. [Google Scholar]
- Gupta, S.; Hrishikeshvan, H.; Sehajpal, P.K. Spirulina protects against Rosiglitazone induced osteoporosis in insulin resistance rats. Diabetes Res. Clin. Pract. 2010, 87, 38–43. [Google Scholar] [CrossRef]
- Gad, A.S.; Khadrawy, Y.A.; El-Nekeety, A.A.; Mohamed, S.R.; Hassan, N.S.; Abdel-Wahhab, M.A. Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition 2011, 27, 582–589. [Google Scholar] [CrossRef]
- Elbaz, A.M.; Ahmed, A.M.H.; Abdel-Maqsoud, A.; Badran, A.M.M.; Abdel-Moneim, A.-M.E. Potential ameliorative role of Spirulina platensis in powdered or extract forms against cyclic heat stress in broiler chickens. Environ. Sci. Pollut. Res. 2022, 29, 45578–45588. [Google Scholar] [CrossRef]
- Moustafa, E.; Alsanie, W.; Gaber, A.; Kamel, N.; Alaqil, A.; Abbas, A. Blue-Green Algae (Spirulina platensis) Alleviates the Negative Impact of Heat Stress on Broiler Production Performance and Redox Status. Animals 2021, 11, 1243. [Google Scholar] [CrossRef]
- Hajati, H.; Zaghari, M.; Oliveira, H. Arthrospira (Spirulina) Platensis Can Be Considered as a Probiotic Alternative to Reduce Heat Stress in Laying Japanese Quails. Rev. Bras. Cienc. Avic. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- AOAC Association of Official Analysis Chemists International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC Association of Official Analysis Chemists International: Washington, DC, USA, 2005; ISBN 0935584544. [Google Scholar]
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional Composition, Nutritional Properties, and Biological Activities of Moroccan Spirulina Microalga. J. Food Qual. 2019, 2019, 3707219. [Google Scholar] [CrossRef] [Green Version]
- Moukette, B.M.; Anatole, P.C.; Biapa, C.P.N.; Njimou, J.R.; Ngogang, J.Y. Free radicals quenching potential, protective properties against oxidative mediated ion toxicity and HPLC phenolic profile of a Cameroonian spice: Piper guineensis. Toxicol. Rep. 2015, 2, 792–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HY-Line W-36 Layers. Available online: https://www.hyline.com/varieties/w-36 (accessed on 10 October 2022).
- Romero, L.M.; Reed, J.M. Collecting baseline corticosterone samples in the field: Is under 3 min good enough? Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 140, 73–79. [Google Scholar] [CrossRef]
- Alaqil, A.; Abbas, A.; El-Beltagi, H.; El-Atty, H.; Mehaisen, G.; Moustafa, E. Dietary Supplementation of Probiotic Lactobacillus acidophilus Modulates Cholesterol Levels, Immune Response, and Productive Performance of Laying Hens. Animals 2020, 10, 1588. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, T.; Liu, L.; Jiao, H.; Lin, H. Effect of copper on antioxidant ability and nutrient metabolism in broiler chickens stimulated by lipopolysaccharides. Arch. Anim. Nutr. 2011, 65, 366–375. [Google Scholar] [CrossRef]
- Uwikor, F.K.; Nwachuku, E.O.; Igwe, F.; Bartimaeus, E.S. Assessment of the Antioxidant Potential of Hypoestes rosea Leaf in Lead-acetate-induced Albino Rats. J. Complement. Altern. Med. Res. 2020, 9, 45–55. [Google Scholar] [CrossRef] [Green Version]
- IBM SPSS Statistics 22. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-22 (accessed on 10 October 2022).
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
- Akbarian, A.; Michiels, J.; DeGroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Oguntunji, A.O.; Alabi, O.M. Influence of high environmental temperature on egg production and shell quality: A review. World Poult. Sci. J. 2010, 66, 739–750. [Google Scholar] [CrossRef]
- Zhang, P.; Yan, T.; Wang, X.; Kuang, S.; Xiao, Y.; Lu, W.; Bi, D. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrier function and improving gut microbiota. Ital. J. Anim. Sci. 2016, 16, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Villar, S.R.; Ronco, M.T.; Bussy, R.F.; Roggero, E.; Lepletier, A.; Manarin, R.; Savino, W.; Pérez, A.R.; Bottasso, O. Tumor Necrosis Factor-α Regulates Glucocorticoid Synthesis in the Adrenal Glands of Trypanosoma cruzi Acutely-Infected Mice. The Role of TNF-R1. PLoS ONE 2013, 8, e63814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2019, 162, 108025. [Google Scholar] [CrossRef]
- Jastrebski, S.F.; Lamont, S.J.; Schmidt, C. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis. PLoS ONE 2017, 12, e0181900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, F.; Mobarez, S.; Mohamed, M.; Attia, Y.; Mekawy, A.; Mahrose, K. Zinc and/or Selenium Enriched Spirulina as Antioxidants in Growing Rabbit Diets to Alleviate the Deleterious Impacts of Heat Stress during Summer Season. Animals 2021, 11, 756. [Google Scholar] [CrossRef]
- Ali, E.A.I.; Barakat, B.M.; Hassan, R. Antioxidant and Angiostatic Effect of Spirulina platensis Suspension in Complete Freund’s Adjuvant-Induced Arthritis in Rats. PLoS ONE 2015, 10, e0121523. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.I.; Kim, I.H. Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poult. Sci. 2018, 97, 2451–2459. [Google Scholar] [CrossRef]
- Mirzaie, S.; Zirak-Khattab, F.; Hosseini, S.A.; Donyaei-Darian, H. Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian-Australas. J. Anim. Sci. 2018, 31, 556–563. [Google Scholar] [CrossRef]
- Mullenix, G.J.; Greene, E.S.; Emami, N.K.; Tellez-Isaias, G.; Bottje, W.G.; Erf, G.F.; Kidd, M.T.; Dridi, S. Spirulina platensis Inclusion Reverses Circulating Pro-inflammatory (Chemo)cytokine Profiles in Broilers Fed Low-Protein Diets. Front. Vet. Sci. 2021, 8, 640968. [Google Scholar] [CrossRef]
- Abd El-Dayem, G.A.; Saleh, G.K.; Abd El-wahab, R.A.E.-R. Impact of Dietary Spirulina (Arthrospira) Platensison Growth Performance, Gene Expression and Antioxidant Status of Quail Challenged with Salmonella Enteritidis. Mansoura Vet. Med. J. 2021, 22, 38–47. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Cai, Y.; Su, Y.; Gao, B.; Wu, H.; Cheng, J. Effects of Spirulina algae as a feed supplement on nutritional value and flavour components of silkie hens eggs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Mariey, Y.A.; Samak, H.R.; Ibrahem, M.A. Effect of Using Spirulina Platensis Algae as Afeed Additive for Poultry Diets: 1-Productive and Reproductive Performances of Local Laying Hens. Egypt. Poult. Sci. J. 2012, 32, 201–215. [Google Scholar]
- Rahbar, A.; Nabipour, I. The Hypolipidemic Effect of Citrullus colocynthis on Patients with Hyperlipidemia. Pak. J. Biol. Sci. 2010, 13, 1202–1207. [Google Scholar] [CrossRef] [Green Version]
- El-Moataaz, S.; Ismael, H.; Aborhyem, S. Assessment of Chemical Composition of Spirulina Platensis and its Effect on Fasting Blood Glucose and Lipid Profile in Diabetic Rats. J. High Inst. Public Health 2019, 49, 198–209. [Google Scholar] [CrossRef]
- Deng, R.; Chow, T.-J. Hypolipidemic, Antioxidant, and Antiinflammatory Activities of Microalgae Spirulina. Cardiovasc. Ther. 2010, 28, e33–e45. [Google Scholar] [CrossRef]
- Agustini, T.W.; Suzery, M.; Sutrisnanto, D.; Ma’Ruf, W.F. Hadiyanto Comparative Study of Bioactive Substances Extracted from Fresh and Dried Spirulina sp. Procedia Environ. Sci. 2015, 23, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.-L.; Lim, Y.-W.; Radhakrishnan, A.K.; Lim, P.-E. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals. BMC Complement. Altern. Med. 2010, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Chei, S.; Oh, H.-J.; Song, J.-H.; Seo, Y.-J.; Lee, K.; Kim, K.-J.; Lee, B.-Y. Spirulina maxima extract prevents activation of the NLRP3 inflammasome by inhibiting ERK signaling. Sci. Rep. 2020, 10, 2075. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Du, L.; Hosokawa, M.; Miyashita, K. Spirulina Lipids Alleviate Oxidative Stress and Inflammation in Mice Fed a High-Fat and High-Sucrose Diet. Mar. Drugs 2020, 18, 148. [Google Scholar] [CrossRef] [Green Version]
- Baxter, M.F.A.; Greene, E.S.; Kidd, M.T.; Tellez-Isaias, G.; Orlowski, S.; Dridi, S. Water amino acid-chelated trace mineral supplementation decreases circulating and intestinal HSP70 and proinflammatory cytokine gene expression in heat-stressed broiler chickens. J. Anim. Sci. 2020, 98, skaa049. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed]
Item | Contents in SP |
---|---|
Moisture (g) 1 | 5.6 |
Crude protein (g) 1 | 56.4 |
Total lipids (g) 1 | 7.2 |
Carbohydrate (g) 1 | 14.2 |
Crude fiber (g) 1 | 0.02 |
Total ash (g) 1 | 7.5 |
Energy (MJ) 1 | 43.6 |
Calcium (mg) 1 | 436.3 |
Phosphorus (mg) 1 | 124.5 |
Sodium (mg) 1 | 220.1 |
Potassium (mg) 1 | 167.8 |
Iron (mg) 1 | 11.5 |
Zinc (mg) 1 | 2.4 |
Total polyphenols (mg GAE/g) 2 | 22.1 |
Total flavonoids (mg QE/g) 2 | 6.7 |
Total antioxidant activity (%) 3 | 29.2 |
Ingredients (g/kg as Fed) | 0-SP | 3-SP | 6-SP | 9-SP |
---|---|---|---|---|
Spirulina | 0.0 | 30.0 | 60.0 | 90.0 |
Soybean meal (44% CP) | 275.0 | 236.4 | 197.7 | 159.1 |
Yellow corn | 566.5 | 575.1 | 583.8 | 592.4 |
Wheat bran | 10.0 | 10.0 | 10.0 | 10.0 |
Soybean oil | 30.0 | 30.0 | 30.0 | 30.0 |
Bone meal | 30.0 | 30.0 | 30.0 | 30.0 |
Limestone | 80.0 | 80.0 | 80.0 | 80.0 |
Salt (NaCl) | 4.0 | 4.0 | 4.0 | 4.0 |
Premix 2 | 3.0 | 3.0 | 3.0 | 3.0 |
DL-Methionine | 1.5 | 1.5 | 1.5 | 1.5 |
Nutrients 3 | ||||
Calculated metabolizable energy (MJ) | 1.26 | 1.26 | 1.26 | 1.26 |
Calculated calcium (g) | 40.2 | 40.2 | 40.2 | 40.2 |
Calculated available phosphorus (g) | 5.2 | 5.2 | 5.2 | 5.2 |
Determined crude protein (g) | 167.5 | 170.0 | 170.0 | 174.5 |
Determined crude fat (g) | 66.0 | 64.5 | 63.8 | 62.1 |
Determined crude fiber (g) | 47.0 | 46.5 | 46.5 | 45.8 |
Treatment Groups 1 | HS (°C) | SP (%) | n | Total-CH, mg/dL | HDL-CH, mg/dL | LDL-CH, mg/dL | Yolk-CH, mg/dL * | Liver-CH, mg/dL * |
---|---|---|---|---|---|---|---|---|
HS | 24 | - | 72 | 138.7 b | 56.3 a | 101.9 b | 12.2 b | 5.4 b |
35 | - | 72 | 162.7 a | 45.2 b | 123.3 a | 21.2 a | 8.1 a | |
SEM | 0.38 | 0.34 | 0.50 | 0.17 | 0.19 | |||
SP | - | 0 | 36 | 162.9 a | 45.9 c | 120.7 a | 18.9 a | 8.5 a |
- | 3 | 36 | 157.4 b | 47.5 c | 115.6 b | 16.9 b | 6.9 b | |
- | 6 | 36 | 146.1 c | 52.4 b | 109.5 c | 15.5 c | 5.8 c | |
- | 9 | 36 | 136.5 d | 57.3 a | 104.5 d | 15.6 c | 5.7 c | |
SEM | 0.54 | 0.48 | 0.71 | 0.24 | 0.27 | |||
HS × SP | 24 | 0 | 18 | 152.3 d | 50.9 c | 113.2 d | 15.2 c | 6.9 |
24 | 3 | 18 | 146.8 e | 52.6 c | 106.0 e | 12.5 d | 5.7 | |
24 | 6 | 18 | 135.5 f | 57.4 b | 98.0 f | 10.4 e | 4.7 | |
24 | 9 | 18 | 120.4 g | 64.3 a | 90.5 g | 10.8 e | 4.2 | |
35 | 0 | 18 | 173.5 a | 40.8 e | 128.3 a | 22.5 a | 10.2 | |
35 | 3 | 18 | 168.0 b | 42.3 e | 125.2 ab | 21.3 ab | 8.2 | |
35 | 6 | 18 | 156.7 c | 47.3 d | 121.0 bc | 20.6 b | 7.0 | |
35 | 9 | 18 | 152.6 d | 50.2 c | 118.5 c | 20.4 b | 7.2 | |
SEM | 0.76 | 0.68 | 1.00 | 0.34 | 0.39 | |||
p-value | HS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
SP | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
HS × SP | <0.001 | 0.009 | <0.001 | <0.001 | 0.470 | |||
SP-Linear contrast | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
SP-Quadratic contrast | <0.001 | 0.001 | 0.941 | <0.001 | 0.007 |
Treatment Groups 1 | HS (°C) | SP (%) | n | CP, ng/mL | MDA, nM/mL | TAOC, U/mL | GSH, nM/mL |
---|---|---|---|---|---|---|---|
HS | 24 | - | 72 | 1009.4 b | 2.1 b | 8.9 a | 30.8 a |
35 | - | 72 | 1904.2 a | 4.0 a | 6.5 b | 24.0 b | |
SEM | 9.24 | 0.09 | 0.19 | 0.19 | |||
SP | - | 0 | 36 | 1607.9 a | 3.9 a | 6.6 b | 23.8 d |
- | 3 | 36 | 1536.8 b | 3.4 b | 7.3 b | 26.0 c | |
- | 6 | 36 | 1421.6 c | 2.7 c | 8.4 a | 28.5 b | |
- | 9 | 36 | 1260.9 d | 2.1 d | 8.5 a | 31.4 a | |
SEM | 13.07 | 0.13 | 0.27 | 0.26 | |||
HS × SP | 24 | 0 | 18 | 1057.7 e | 2.5 cd | 7.4 bc | 27.2 c |
24 | 3 | 18 | 1037.5 ef | 2.3 cd | 8.1 b | 28.2 c | |
24 | 6 | 18 | 983.5 ef | 1.8 de | 10.1 a | 31.5 b | |
24 | 9 | 18 | 958.9 f | 1.5 e | 10.0 a | 36.1 a | |
35 | 0 | 18 | 2158.1 a | 5.3 a | 5.9 c | 20.4 f | |
35 | 3 | 18 | 2036.1 b | 4.6 a | 6.5 bc | 23.7 e | |
35 | 6 | 18 | 1859.8 c | 3.6 b | 6.6 bc | 25.5 d | |
35 | 9 | 18 | 1562.9 d | 2.7 c | 7.0 bc | 26.7 cd | |
SEM | 18.48 | 0.18 | 0.39 | 0.37 | |||
p-value | HS | <0.001 | <0.001 | <0.001 | <0.001 | ||
SP | <0.001 | <0.001 | <0.001 | <0.001 | |||
HS × SP | <0.001 | <0.001 | 0.019 | <0.001 | |||
SP-Linear contrast | <0.001 | <0.001 | <0.001 | <0.001 | |||
SP-Quadratic contrast | 0.001 | 0.496 | 0.290 | 0.179 |
Treatment Groups 1 | HS (°C) | SP (%) | n | IL-1β, pg/mL | IL-6, pg/mL | TNF-α, pg/mL |
---|---|---|---|---|---|---|
HS | 24 | - | 72 | 241.9 b | 2.8 b | 96.5 b |
35 | - | 72 | 588.7 a | 10.8 a | 141.8 a | |
SEM | 10.36 | 0.11 | 0.45 | |||
SP | - | 0 | 36 | 531.6 a | 8.9 a | 128.7 a |
- | 3 | 36 | 458.4 b | 8.3 b | 121.5 b | |
- | 6 | 36 | 376.6 c | 6.2 c | 115.0 c | |
- | 9 | 36 | 294.7 d | 3.7 d | 111.6 d | |
SEM | 14.65 | 0.16 | 0.63 | |||
HS × SP | 24 | 0 | 18 | 259.5 e | 3.7 d | 103.9 e |
24 | 3 | 18 | 257.6 e | 2.6 e | 96.6 f | |
24 | 6 | 18 | 230.3 e | 2.6 e | 93.6 f,g | |
24 | 9 | 18 | 220.4 e | 2.1 e | 92.0 g | |
35 | 0 | 18 | 803.7 a | 14.1 a | 153.5 a | |
35 | 3 | 18 | 659.3 b | 13.9 a | 146.4 b | |
35 | 6 | 18 | 522.9 c | 9.7 b | 136.3 c | |
35 | 9 | 18 | 368.9 d | 5.4 c | 131.1 d | |
SEM | 20.72 | 0.22 | 0.89 | |||
p-value | HS | <0.001 | <0.001 | <0.001 | ||
SP | <0.001 | <0.001 | <0.001 | |||
HS × SP | <0.001 | <0.001 | <0.001 | |||
SP-Linear contrast | <0.001 | <0.001 | <0.001 | |||
SP-Quadratic contrast | 0.766 | <0.001 | 0.003 |
Treatment Groups 1 | HS (°C) | SP (%) | n | EP, % | EW, g | FI, g | FCR |
---|---|---|---|---|---|---|---|
HS | 24 | - | 144 | 90.5 a | 61.8 a | 111.6 a | 2.00 b |
35 | - | 144 | 77.0 b | 56.8 b | 101.5 b | 2.37 a | |
SEM | 0.36 | 0.08 | 0.13 | 0.013 | |||
SP | - | 0 | 72 | 78.8 c | 56.7 d | 103.3 d | 2.38 a |
- | 3 | 72 | 83.5 b | 57.8 c | 105.3 c | 2.21 b | |
- | 6 | 72 | 85.1 b | 60.7 b | 107.6 b | 2.09 c | |
- | 9 | 72 | 87.6 a | 61.9 a | 110.2 a | 2.04 c | |
SEM | 0.51 | 0.11 | 0.18 | 0.018 | |||
HS × SP | 24 | 0 | 36 | 89.1 b | 61.1 b | 107.0 d | 1.96 d |
24 | 3 | 36 | 88.9 b | 61.4 b | 109.7 c | 2.01 d | |
24 | 6 | 36 | 91.3 ab | 62.2 a | 113.9 b | 2.01 d | |
24 | 9 | 36 | 92.7 a | 62.3 a | 115.9 a | 2.01 d | |
35 | 0 | 36 | 68.6 e | 52.3 e | 99.5 g | 2.79 a | |
35 | 3 | 36 | 78.1 d | 54.3 d | 100.9 f | 2.42 b | |
35 | 6 | 36 | 78.9 d | 59.2 c | 101.3 f | 2.18 c | |
35 | 9 | 36 | 82.4 c | 61.4 b | 104.4 e | 2.07 c,d | |
SEM | 0.73 | 0.16 | 0.25 | 0.026 | |||
p-value | HS | <0.001 | <0.001 | <0.001 | <0.001 | ||
SP | <0.001 | <0.001 | <0.001 | <0.001 | |||
HS × SP | <0.001 | <0.001 | <0.001 | <0.001 | |||
SP-Linear contrast | <0.001 | <0.001 | <0.001 | <0.001 | |||
SP-Quadratic contrast | 0.037 | 0.808 | 0.161 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Otaibi, M.I.M.; Abdellatif, H.A.E.; Al-Huwail, A.K.A.; Abbas, A.O.; Mehaisen, G.M.K.; Moustafa, E.S. Hypocholesterolemic, Antioxidative, and Anti-Inflammatory Effects of Dietary Spirulina platensisis Supplementation on Laying Hens Exposed to Cyclic Heat Stress. Animals 2022, 12, 2759. https://doi.org/10.3390/ani12202759
Al-Otaibi MIM, Abdellatif HAE, Al-Huwail AKA, Abbas AO, Mehaisen GMK, Moustafa ES. Hypocholesterolemic, Antioxidative, and Anti-Inflammatory Effects of Dietary Spirulina platensisis Supplementation on Laying Hens Exposed to Cyclic Heat Stress. Animals. 2022; 12(20):2759. https://doi.org/10.3390/ani12202759
Chicago/Turabian StyleAl-Otaibi, Morshed I. M., Hasan A. E. Abdellatif, Abdelmohsen K. A. Al-Huwail, Ahmed O. Abbas, Gamal M. K. Mehaisen, and Eman S. Moustafa. 2022. "Hypocholesterolemic, Antioxidative, and Anti-Inflammatory Effects of Dietary Spirulina platensisis Supplementation on Laying Hens Exposed to Cyclic Heat Stress" Animals 12, no. 20: 2759. https://doi.org/10.3390/ani12202759