Prevalence and Genetic Characterization of Porcine Respiratory Coronavirus in Korean Pig Farms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Pig Farms and Sample Collection
2.2. ELISA for Serological Screening
2.3. Nucleic Acid Extraction
2.4. RT-qPCR Assays for Detection of PRCV and TGEV
2.5. Sequencing of PRCV S Gene
2.6. Genetic and Phylogenetic Analyses
3. Results
3.1. Serological Prevalence of PRCV in Korean Pig Farms
3.2. Detection and Prevalence of PRCV in Seropositive Pig Farms
3.3. Analysis of S Gene Sequences of Korean PRCV Strains
3.4. Phylogenetic Analysis Based on the Complete S Gene Sequences of PRCV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Vlasova, A.N.; Kenney, S.P.; Saif, L.J. Emerging and re-emerging coronaviruses in pigs. Curr. Opin. Virol. 2019, 34, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; de Groot, R.J.; Haagmans, B.; Lau, S.K.P.; Neuman, B.W.; Perlman, S.; Sola, I.; van der Hoek, L.; Wong, A.C.P.; Yeh, S.H. ICTV Virus Taxonomy Profile: Coronaviridae 2023. J. Gen. Virol. 2023, 104, 001843. [Google Scholar] [CrossRef] [PubMed]
- Turlewicz-Podbielska, H.; Pomorska-Mól, M. Porcine coronaviruses: Overview of the state of the art. Virol. Sin. 2021, 36, 833–851. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Yu, J.Q.; Huang, Y.W. Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): An update three years after its discovery. Virus Res. 2020, 285, 198024. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Liu, X.; Sun, Y.; Zeng, W.; Li, Y.; Zhao, F.; Wu, K.; Fan, S.; Zhao, M.; Chen, J.; et al. Swine enteric coronavirus: Diverse pathogen-host interactions. Int. J. Mol. Sci. 2022, 23, 3953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hasoksuz, M.; Spiro, D.; Halpin, R.; Wang, S.; Stollar, S.; Janies, D.; Hadya, N.; Tang, Y.; Ghedin, E.; et al. Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus. Virology 2007, 358, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Laude, H.; Van Reeth, K.; Pensaert, M. Porcine respiratory coronavirus: Molecular features and virus-host interactions. Vet. Res. 1993, 24, 125–150. [Google Scholar] [PubMed]
- Pensaert, M.; Callebaut, P.; Vergote, J. Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet. Q. 1986, 8, 257–261. [Google Scholar] [CrossRef]
- Kim, L.; Hayes, J.; Lewis, P.; Parwani, A.V.; Chang, K.O.; Saif, L.J. Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd. Arch. Virol. 2000, 145, 1133–1147. [Google Scholar] [CrossRef]
- Costantini, V.; Lewis, P.; Alsop, J.; Templeton, C.; Saif, L.J. Respiratory and fecal shedding of porcine respiratory coronavirus (PRCV) in sentinel weaned pigs and sequence of the partial S-gene of the PRCV isolates. Arch. Virol. 2004, 149, 957–974. [Google Scholar] [CrossRef] [PubMed]
- Saif, L.J.; van Cott, J.L.; Brim, T.A. Immunity to transmissible gastroenteritis virus and porcine respiratory coronavirus infections in swine. Vet. Immunol. Immunopathol. 1994, 43, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.; Chae, C.; Kweon, C.H. Immunohistochemical identification of porcine respiratory coronavirus antigen in the lung of conventional pigs. Vet. Pathol. 1997, 34, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Chae, C.; Kim, O.; Min, K.; Choi, C.; Kim, J.; Cho, W. Seroprevalence of porcine respiratory coronavirus in selected Korean pigs. Prev. Vet. Med. 2000, 46, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.G.; Son, B.K.; Lee, J.M.; Kim, T.K. Diagnosis and seroprevalence of porcine respiratory coronavirus disease. Korean J. Vet. Serv. 2009, 32, 293–298. [Google Scholar]
- Oh, Y.I.; Yang, D.K.; Cho, S.D.; Kang, H.K.; Choi, S.K.; Kim, Y.J.; Hyun, B.H.; Song, J.Y. Sero-surveillance of transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) in South Korea. J. Bacteriol. Virol. 2011, 41, 189–193. [Google Scholar] [CrossRef]
- Chae, C.; Kim, O.; Choi, C.; Min, K.; Cho, W.S.; Kim, J.; Tai, J.H. Prevalence of porcine epidemic diarrhoea virus and transmissible gastroenteritis virus infection in Korean pigs. Vet. Rec. 2000, 147, 606–608. [Google Scholar] [CrossRef] [PubMed]
- Song, D.S.; Kang, B.K.; Oh, J.S.; Ha, G.W.; Yang, J.S.; Moon, H.J.; Jang, Y.S.; Park, B.K. Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus. J. Vet. Diagn. Investig. 2006, 18, 278–281. [Google Scholar] [CrossRef]
- Cheong, Y.; Oh, C.; Lee, K.; Cho, K.H. Survey of porcine respiratory disease complex-associated pathogens among commercial pig farms in Korea via oral fluid method. J. Vet. Sci. 2017, 18, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Henao-Diaz, A.; Giménez-Lirola, L.; Baum, D.H.; Zimmerman, J. Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porc. Health Manag. 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Magtoto, R.; Poonsuk, K.; Baum, D.; Zhang, J.; Chen, Q.; Ji, J.; Piñeyro, P.; Zimmerman, J.; Giménez-Lirola, L.G. Evaluation of the serologic cross-reactivity between transmissible gastroenteritis coronavirus and porcine respiratory coronavirus using commercial blocking enzyme-linked immunosorbent assay kits. mSphere 2019, 4, e00017-19. [Google Scholar] [CrossRef] [PubMed]
- Sunaga, F.; Tsuchiaka, S.; Kishimoto, M.; Aoki, H.; Kakinoki, M.; Kure, K.; Okumura, H.; Okumura, M.; Okumura, A.; Nagai, M.; et al. Development of a one-run real-time PCR detection system for pathogens associated with porcine respiratory diseases. J. Vet. Med. Sci. 2020, 82, 217–223. [Google Scholar] [CrossRef]
- Vemulapalli, R.; Gulani, J.; Santrich, C. A real-time TaqMan RT-PCR assay with an internal amplification control for rapid detection of transmissible gastroenteritis virus in swine fecal samples. J. Virol. Methods 2009, 162, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, J.; Yao, G.; Guo, Q.; Wang, J.; Liu, G. A TaqMan-probe-based multiplex real-time RT-qPCR for simultaneous detection of porcine enteric coronaviruses. Appl. Microbiol. Biotechnol. 2019, 103, 4943–4952. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Feng, Y.; Zhang, J.; Kong, D.; Fan, J.; Zhao, M.; Hua, L.; Xiang, J.; Tang, X.; Xiao, S.; et al. Development of a multiplex reverse transcription-quantitative PCR (qPCR) method for detecting common causative agents of swine viral diarrhea in China. Porc. Health Manag. 2024, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.S.; Pors, S.E.; Jensen, H.E.; Bille-Hansen, V.; Bisgaard, M.; Flachs, E.M.; Nielsen, O.L. An investigation of the pathology and pathogens associated with porcine respiratory disease complex in Denmark. J. Comp. Pathol. 2010, 143, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Martín-Valls, G.E.; Li, Y.; Díaz, I.; Cano, E.; Sosa-Portugal, S.; Mateu, E. Diversity of respiratory viruses present in nasal swabs under influenza suspicion in respiratory disease cases of weaned pigs. Front. Vet. Sci. 2022, 9, 1014475. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Garcia, J.; Robben, N.; Magnée, D.; Eley, T.; Dennis, I.; Kayes, S.M.; Thomson, J.R.; Tucker, A.W. The use of oral fluids to monitor key pathogens in porcine respiratory disease complex. Porc. Health Manag. 2017, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Rotolo, M.L.; Sun, Y.; Wang, C.; Giménez-Lirola, L.; Baum, D.H.; Gauger, P.C.; Harmon, K.M.; Hoogland, M.; Main, R.; Zimmerman, J.J. Sampling guidelines for oral fluid-based surveys of group-housed animals. Vet. Microbiol. 2017, 209, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Rawal, G.; Yim-Im, W.; Aljets, E.; Halbur, P.G.; Zhang, J.; Opriessnig, T. Porcine respiratory coronavirus (PRCV): Isolation and characterization of a variant PRCV from USA pigs. Pathogens 2023, 12, 1097. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C.M.; Gebauer, F.; Suñé, C.; Mendez, A.; Dopazo, J.; Enjuanes, L. Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 1992, 190, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Usami, Y.; Fukai, K.; Ichikawa, Y.; Okuda, Y.; Shibata, I.; Motoyama, C.; Imai, K.; Kirisawa, R. Virological and serological studies of porcine respiratory coronavirus infection on a Japanese farm. J. Vet. Med. Sci. 2008, 70, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Halbur, P.G.; Pallarés, F.J.; Opriessnig, T.; Vaughn, E.M.; Paul, P.S. Pathogenicity of three isolates of porcine respiratory coronavirus in the USA. Vet. Rec. 2003, 152, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Jabrane, A.; Girard, C.; Elazhary, Y. Pathogenicity of porcine respiratory coronavirus isolated in Québec. Can. Vet. J. 1994, 35, 86–92. [Google Scholar] [PubMed]
- O’Toole, D.; Brown, I.; Bridges, A.; Cartwright, S.F. Pathogenicity of experimental infection with ‘pneumotropic’ porcine coronavirus. Res. Vet. Sci. 1989, 47, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Van Reeth, K.; Nauwynck, H.; Pensaert, M. Dual infections of feeder pigs with porcine reproductive and respiratory syndrome virus followed by porcine respiratory coronavirus or swine influenza virus: A clinical and virological study. Vet. Microbiol. 1996, 48, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Brockmeier, S.L.; Loving, C.L.; Nicholson, T.L.; Palmer, M.V. Coinfection of pigs with porcine respiratory coronavirus and Bordetella bronchiseptica. Vet. Microbiol. 2008, 128, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Van Reeth, K.; Pensaert, M.B. Porcine respiratory coronavirus-mediated interference against influenza virus replication in the respiratory tract of feeder pigs. Am. J. Vet. Res. 1994, 55, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kim, H.R.; Jeon, G.T.; Baek, J.S.; Kwon, O.D.; Park, C.K. Molecular detection of porcine parainfluenza viruses 1 and 5 using a newly developed duplex real-time RT-PCR in South Korea. Animals 2023, 13, 598. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.R.; Kim, J.M.; Lee, K.K.; Kim, W.I.; Lyoo, Y.S.; Kwon, O.D.; Park, C.K.; Park, S.C. First report of Porcine respirovirus 1 in South Korea. Transbound. Emerg. Dis. 2022, 69, 4041–4047. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, H.R.; Lee, E.B.; Lee, S.K.; Kim, W.I.; Lyoo, Y.S.; Park, C.K.; Ku, B.K.; Jeoung, H.Y.; Lee, K.K.; et al. First detection and genetic characterization of swine orthopneumovirus from domestic pig farms in the Republic of Korea. Viruses 2023, 15, 2371. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.E.; Park, J.Y.; Lee, K.K.; Ko, M.K.; Ku, B.K.; Park, C.K.; Jeoung, H.Y. Genetic diversity of porcine reproductive and respiratory syndrome virus and evaluation of three one-step real-time RT-PCR assays in Korea. BMC Vet. Res. 2022, 18, 327. [Google Scholar] [CrossRef] [PubMed]
Seroprevalence at the Pig-Level | Seroprevalence at the Farm-Level | ||||
---|---|---|---|---|---|
Interpretation | No. of Positive | Positive Rate (%) | Interpretation | No. of Positive | Positive Rate (%) |
PRCV-positive | 144 | 41.1 | PRCV-positive | 42 | 60.0 |
TGEV-positive | 15 | 4.3 | TGEV-positive | 1 | 1.4 |
Inconclusive | 3 | 0.9 | P/T-positive a | 6 | 8.6 |
Negative | 188 | 53.7 | Negative | 21 | 30.0 |
Total | 350 | 100.0 | Total | 70 | 100.0 |
Province | No. of Tested Farm | No. of Farm Categorized by ELISA Results (%) a | |||
---|---|---|---|---|---|
PRCV | TGEV | PRCV/TGEV | Negative | ||
Gangwon-do | 4 | 2 | - | 1 | 1 |
Gyeonggi-do | 9 | 8 | - | - | 1 |
Chungcheongbuk-do | 8 | 5 | - | - | 3 |
Chungcheongnam-do | 8 | 3 | - | 1 | 4 |
Gyeongsangbuk-do | 6 | 4 | - | - | 2 |
Gyeongsangnam-do | 8 | 6 | 1 | - | 1 |
Jeollabuk-do | 7 | 4 | - | 2 | 1 |
Jeollanam-do | 12 | 7 | - | 1 | 4 |
Jeju-do | 8 | 3 | - | 1 | 4 |
Total | 70 (100.0) | 42 (60.0) | 1 (1.4) | 6 (8.6) | 21 (30.0) |
Farm ID | Province a | No. of Tested | Antibody Detection by ELISA b | |||
---|---|---|---|---|---|---|
TGEV | PRCV | Inconclusive | Negative | |||
KS | GW | 5 | 3 | 2 | - | - |
SW | CN | 5 | 2 | 3 | - | - |
AJ | GN | 5 | 2 | - | - | 3 |
AS | JB | 5 | 2 | 2 | 1 | - |
JY | JB | 5 | 3 | 2 | - | - |
ITS | JN | 5 | 2 | 1 | - | 2 |
GB | JJ | 5 | 1 | 2 | - | 2 |
Total | 35 | 15 | 12 | 1 | 7 |
Method a | Detection at the Farm Level | Detection at the Sample Level | ||||
---|---|---|---|---|---|---|
No. of Tested | No. of Positive | Detection Rate (%) | No. of Tested | No. of Positive | Detection Rate (%) | |
PT-RT-qPCR | 20 | 9 | 45.0 | 60 | 17 | 28.3 |
T-RT-qPCR | 20 | 0 | 0 | 60 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Park, J.; Lee, D.-K.; Kim, W.-I.; Lyoo, Y.S.; Park, C.-K.; Kim, H.-R. Prevalence and Genetic Characterization of Porcine Respiratory Coronavirus in Korean Pig Farms. Animals 2024, 14, 1698. https://doi.org/10.3390/ani14111698
Kim J-H, Park J, Lee D-K, Kim W-I, Lyoo YS, Park C-K, Kim H-R. Prevalence and Genetic Characterization of Porcine Respiratory Coronavirus in Korean Pig Farms. Animals. 2024; 14(11):1698. https://doi.org/10.3390/ani14111698
Chicago/Turabian StyleKim, Ju-Han, Jonghyun Park, Dong-Kyu Lee, Won-Il Kim, Young S. Lyoo, Choi-Kyu Park, and Hye-Ryung Kim. 2024. "Prevalence and Genetic Characterization of Porcine Respiratory Coronavirus in Korean Pig Farms" Animals 14, no. 11: 1698. https://doi.org/10.3390/ani14111698
APA StyleKim, J.-H., Park, J., Lee, D.-K., Kim, W.-I., Lyoo, Y. S., Park, C.-K., & Kim, H.-R. (2024). Prevalence and Genetic Characterization of Porcine Respiratory Coronavirus in Korean Pig Farms. Animals, 14(11), 1698. https://doi.org/10.3390/ani14111698